I am a forest ecologist at the Institute for Alpine Environment at Eurac Research in Bolzano/Bozen, Italy.
I am interested in understanding how to better manage our forests in a future characterized by global changes. My work aims at studying the dynamics of forest ecosystems to anticipate the potential impacts of climate, disturbance and socio-economic changes. I am specialized in the application of simulation models of forest dynamics to explore interactions of trees with their changing environment and forest management strategies to enhance long-term resistance and resilience at multiple scales - from stand to landscape. I am also interested about dendrology, silviculture, dendroecological research, forest inventory and forest biodiversity. And I love mountains, geography, travelling, biking, cross-country skiing and home brewing.
See the REINFORCE project webpage to know more about my current research.
Ph.D. in Forest Ecology, 2015
ETH Zurich, Switzerland
MSc in Forestry and Environmental Science, 2010
University of Padua, Italy
Biodiversity and Forest Management
Resilient Alpine forest landscapes to global changes
Resilience-based forest management with network theory
Species Mixture Effects on Tree Growth in Swiss forests
Advanced multifunctional management of European mountain forests
Understory is a key component of forest biodiversity. The structure of the forest stand and the horizontal composition of the canopy play a major role on the light regime of the understory, which in turn affects the abundance and the diversity of the understory plant community. Reliable assessments of canopy structural attributes are essential for forest research and biodiversity monitoring programs, as well as to study the relationship between canopy and understory plant communities. Canopy photography is a widely used method but it is still not clear which photographic techniques is better suited to capture canopy attributes at stand-level that can be relevant in forest biodiversity studies. For this purpose, we collected canopy structure and understory plant diversity data on 51 forest sites in the north-eastern Italian Alps, encompassing a diversity of forest types from low-elevation deciduous, to mixed montane stands to subalpine coniferous forests. Canopy images were acquired using both digital cover (DCP) and hemispherical (DHP) photography, and analysed canopy structural attributes. These attributes were then compared to tree species composition data to evaluate whether they were appropriate to differentiate between forest types. Additionally, we tested what canopy attributes derived from DCP and DHP best explained the species composition of vascular plants growing in the understory. We found that hemispherical canopy photography was most suitable to capture differences in forest types, which was best expressed by variables such as leaf inclination angle and canopy openness. On our sites, DHP-based canopy attributes were also able to better distinguish between different conifer forests. Leaf clumping was the most important attribute for determining plant species distribution of the understory, indicating that diverse gap structures create different microclimate conditions enhancing diverse plant species with different ecological strategies. This study supports the reliability of canopy photography to derive meaningful indicators in forest and biodiversity research, but also provide insights for increasing understory diversity in managed forests of high conservation value.
Simulation models are important tools to study the impacts of climate change and natural disturbances on forest ecosystems. Being able to track tree demographic processes in a spatially explicit manner, process-based forest landscape models are considered the most suitable to provide robust projections that can aid decision-making in forest management. However, landscape models are challenging to parameterize and setting up new study areas for application studies largely depends on data availability. The aim of this study is to demonstrate the parameterization process, including model testing and evaluation, for setting up a study area in the Italian Alps in a process-based forest landscape model using available data. We processed soil, climate, carbon pools, vegetation, disturbances and forest management data, and ran iterative spin-up simulations to generate a virtual landscape best resembling current conditions. Our results demonstrated the feasibility of initializing forest landscape models with data that are typically available from forest management plans and national forest inventories, as well as openly available mapping products. Evaluation tests proved the ability of the model to capture the environmental constraints driving regeneration dynamics and inter-specific competition in forests of the Italian Alps, as well as to simulate natural disturbances and carbon dynamics. The model can subsequently be applied to investigate forest landscape development under a suite of future scenarios and provide recommendations for adapting forest management decisions.
I occasionally publish posts in the EFI Resilience Blog and in Forest Monitor. Here also featured articles in the web, interviews and dissemination
See my CV for contributions prior 2016