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A B S T R A C T   

Forest ecosystem models, being widespread science tools and used for forest management decision support are 
usually evaluated individually against field data sets, while model intercomparison and joint evaluation studies 
are rare. We tested five forest models according to a harmonized protocol against data from nine forest com-
partments in the Snĕžnik region, in Slovenia. The suite of models included stand- and landscape-scale, empirical- 
and process-based models used across Europe. The test dataset originated from inventory data covering 50 years 
(tree measurements 1963, 1983 and 2013) and included annual harvesting records at tree level. Uncertainties in 
data and forest conditions were considered by defining 12 scenarios varying initial regeneration, browsing 
pressure and harvest modalities. We evaluated the models` ability to initialize forest conditions accurately, 
whether management interventions could be implemented based on harvest records, and how well basal area and 
diameter structure could be predicted. Simulation results for basal area development showed good to satisfactory 
performance for all models, at which SAMSARA2, SIBYLA and PICUS showed the best agreement. Comparison of 
simulated and observed diameter distributions showed good performance of ForClim, PICUS, SAMSARA2 and 
SIBYLA. Model output variability was between 6% and 24%, indicating the relevance to consider uncertainties 
that can be attributed to specific sources. There was no clear hierarchy between more empirical or more process- 
based models regarding accuracy of stand development projections. The cohort-based landscape model LandClim 
showed the lowest stand-level accuracy and scenario sensitivity, but results nevertheless qualified it for com-
plementary application at landscape scale. Within individual-based models, spatially explicit models seemed to 
be more suitable for heterogeneous mixed mountain forests. The findings demonstrated the usefulness of in-
ventory datasets for model testing and intercomparison.   

1. Introduction 

Forest simulation models are powerful tools for testing and evalu-
ating the mid- to long-term implications of different management stra-
tegies on future forest development and related ecosystem service 

provisioning (Söderbergh and Ledermann 2003; Schelhaas et al., 2014). 
Changing environmental conditions and intensifying disturbance re-
gimes (e.g., Seidl et al., 2011; Temperli et al., 2013) have increased the 
complexity in forest resource planning and management, and conse-
quently the role of model-based decision support has drawn a lot of 
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attention recently (Muys et al., 2011; Linkevičius et al., 2019). 
One response to this growing challenge has been an increased reli-

ance on forest simulation models, which are potentially climate sensitive 
and allow for alternative and novel forest management strategies, to be 
evaluated. Concomitantly, there has also been an increase in testing the 
benefits, limits and credibility of forest models (Courbaud et al., 2015; 
Foster et al., 2017). Model evaluation studies are required to build trust 
and confidence in model outputs and are thus a prerequisite for any 
model application in practical decision support. In view of growing in-
terest in complex forest structures, multi-species mixtures, the provi-
sioning of various ecosystem services beyond timber production and the 
need to consider the effects of a changing climate, the demands being 
placed on forest models have grown considerably over the recent years. 
Silvicultural regimes that have been proposed to adapt forests to climate 
change often focus on small-scale silvicultural measures and the creation 
of heterogeneous stand conditions to foster forest resilience (Chris-
tensen 1997; Puettmann et al., 2009). Adequately representing these 
forest structures, and the underlying ecosystem processes that generate 
them, requires individual-based, climate-sensitive forest modeling ap-
proaches that allow the simulation of complex silvicultural tree selection 
and cutting patterns (Söderbergh and Ledermann 2003; Grimm et al., 
2005; Mina et al., 2017). 

From the perspective of a potential model user, it can be difficult to 
decide what the appropriate model for a specific task and location 
should be based on its original theoretical concept. The reason is that 
many models, being scientific tools under permanent development 
rather than ready products, are continuously refined, extended or hy-
bridized with other models (Larocque et al., 2011). Therefore, to iden-
tify strengths and weaknesses of different models, intercomparison 
studies are recommended (Huber et al., 2013), where multiple models 
are tested within a harmonized framework against independent obser-
vational data. While model comparison studies are frequently published 
for carbon and water flux models (e.g., Ryan et al., 1996; Hanson et al., 
2004; Jin et al., 2016; Thurner et al., 2017) multi-model evaluation 
studies for forest ecosystem models are rare. For instance, Badeck et al. 
(2001) tested six gap models against observed structure and species 
composition of a virgin forest. Other studies comparing models origi-
nating from the same region have been published by Härkönen et al. 
(2010), Huber et al. (2013) and McCullagh et al. (2017). Recently, 
Bugmann et al. (2019) compared the behavior of mortality algorithms 
implemented in several forest models. However, studies comparing 
forest models that originate from different countries and different 
ecological and management contexts against long-term observational 
data sets from managed forests are rare (but see e.g., Mäkelä et al., 2000; 
Lindner et al., 2005). 

Consistent data sets from managed multi-species forests that extend 
over several decades are rare, particularly when tree-level data are 
required. Usually, data from silvicultural experiments are utilized for 
this purpose (Mäkelä et al., 2000; Yaussy 2000; Lindner et al., 2005; 
Seidl et al., 2005). When long-term observational data are used for a 
model evaluation study, the issue of information quality arises (Gadow 
2000). Historical data from decades ago may be subject to uncertainty 
with regard to accuracy of measurements, and there may be gaps with 
regard to tree species-specific information, and unknown calipering 
thresholds. Moreover, usually no information about tree positions, forest 
structure or spatial species mixture types is available. The timing of 
harvests as well as the composition of harvested volume (species, dead 
and alive trees) may also not be known exactly. Given the relevance of 
legacies for future forest development, erroneous initial forest condi-
tions may propagate over time and increase uncertainty, which limits 
the power of model evaluation studies. 

In the FP7 project ARANGE (http://www.arange-project.eu), several 
forest models, originally developed for different European forest types 
and representing different conceptual modeling approaches, were 
employed to explore management alternatives for mountain forests in 
major European mountain ranges (Bugmann et al., 2017). In addition, 

multi-decade forest inventory data from the Dinaric Mountains in 
Slovenia were available within the project consortium. This setting 
provided the opportunity to compare five established models in a model 
intercomparison study. 

Specific questions of the study were: 

(1) How well can forest models be initialized with historical in-
ventory data?  

(2) How well can forest models implement historical management 
schemes derived from harvest records?  

(3) How well do observed stand trajectories and model simulations 
match with regard to volume, basal area and diameter structure? 

2. Material and methods 

2.1. Study area 

The observational time series data comes from an area near the 
Snĕžnik Mountain (1796 m a.s.l.), in the northern part of the Dinaric 
Mountains, Slovenia, Europe. The Snĕžnik area is a karst limestone 
plateau, transformed in the last glacial period. The soils are mainly 
chromic Cambisols and rendzic Leptosols. The climate in the northern 
Dinaric Mountains has Mediterranean influences, with warm summer 
temperatures (long-term mean from July to August is 18.3 ◦C at 800 m a. 
s.l., and 14.9 ◦C at 1300 m a.s.l.) and low winter temperatures (mean 
January temperatures − 0.6 ◦C to − 4.1 ◦C). Mean annual temperature 
ranges from 6.8 ◦C at 800 m to 3.1 ◦C at 1300 m, with annual precipi-
tation between 1670 mm and 1930 mm, respectively. Mean summer 
precipitation (May to September) ranges from 650 to 740 mm. The 
upper timberline is located at approximately 1550 m. 

Mountainous silver fir (Abies alba Mill.) - European beech (Fagus 
sylvatica L.) - Norway spruce (Picea abies Karst.) forests are the prevailing 
natural forest type, with frequent occurrence of sycamore maple (Acer 
pseudoplatanus L.) and wych elm (Ulmus glabra Huds.), while small- 
leaved lime (Tilia cordata Mill.), rowan (Sorbus aucuparia L.), common 
whitebeam (Sorbus aria (L.) Crantz), yew (Taxus baccata L.) and some 
other species can also be found sporadically. The first major regular 
utilization of these forests started in the second half of the 19th century 
when silver fir was promoted, while in line with the economic principles 
of that time, beech was weeded out and used for charcoal and potash 
production and wood distillation (Perko 2002). At the beginning of the 
20th century, an uneven-aged single stem selection system (i.e., plenter 
system) was introduced (Schollmayer 1906). Due to a noticeable 
decrease in fir vitality and its insufficient regeneration and recruitment 
(Klopcic et al., 2010), a combination of single stem and small-scale 
irregular shelterwood system was introduced in the 1960s. Afterwards 
it was adapted to a more flexible, site and stand specific continuous 
cover system labeled “free style silviculture”, combining elements of 
single stem selection, irregular shelterwood and shelterwood ap-
proaches, which has been applied since then (Mlinsek 1968; Boncina 
2011). 

Within the Sneznik area a set of nine compartments with a total area 
of 60.0 ha was chosen for the model evaluation study. The sites are 
located apart from each other on elevations between 800 m to 1300 m a. 
s.l.. 

2.2. Forest inventory dataset 

Along with the introduction of uneven-aged forest management at 
the beginning of the 20th century, a permanent division of forests into 
compartments was established and since 1912 eight forest inventories 
have been conducted. Before 1973 inventories were implemented by 
fully callipering the compartments. In 1973 and 1983, inventories were 
executed as full callipering of a sample of compartments, while in 1993 
permanent sample plots were established and used since then. The full- 
callipering data were available from inventories in 1963 and a follow-up 
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measurement in 1973 (compartment 17A) or 1983 (all other compart-
ments). Due to low sampling densities in the 1993 and 2003 inventories, 
this data could not be utilized to calculate reliable values for individual 
compartments. Thus, for the current study, an angle-count sampling 
inventory (Bitterlich 1952) was conducted in 2013 on a 50 × 50 m grid 
to gather data compatible with the historical surveys in 1963, 1973 and 
1983. Thus, compartment polygons did not change throughout the 
observation period starting in 1963. From all inventories, stem numbers 
per hectare were available per tree species in 5 cm DBH (diameter at 
breast height)-classes, starting at 10 cm DBH. Only live trees were 
recorded in the inventories. For details about the nine study compart-
ments see Table SM1. 

Depending on the site index, two sets of height functions relating tree 
height to DBH for individual species were assigned to the compartments 
to calculate initial tree height in 1963 (Table SM2). 

Starting in 1963, a historical register of annual harvests per 
compartment was available, documenting the harvests in 5 cm DBH- 
classes. Table SM1 presents selected information about the harvesting 
activities in the forest compartments. 

2.3. Climate data 

The forest models require daily or monthly climate data to drive the 
simulations (see Table SM3). For each of the nine forest compartments a 
daily time series of climate data covering the period 1963–2013 was 
prepared based on the nearest grid cell (Lat. 45.625, Long. 14.375) of 
the E-OBS data set (van den Besselaar et al. 2011). The MT-CLIM rou-
tines (Running et al., 1987; Thornton and Running 1999) were used to 
adjust the E-OBS climate record for elevation, slope and aspect of the 
nine sites and to estimate incoming global radiation of the daylight 
period and vapor pressure deficit (see Thornton et al., 2000). 

2.4. Forest models 

The five models were the gap model ForClim (Bugmann 1996), the 
landscape model LandClim (Schumacher et al., 2004), the hybrid 3D 
patch model PICUS (Hönninger and Lexer 2001; Seidl et al., 2005) and 
the spatially explicit empirical models SAMSARA2 (Courbaud et al., 
2015) and SIBYLA (Fabrika 2005). The models are briefly introduced 
and their key features summarized in Table SM3. For detailed de-
scriptions, we refer to the original sources. 

2.4.1. ForClim 
ForClim is a climate-sensitive forest succession (gap) model that has 

been developed to simulate forest dynamics over a wide range of envi-
ronmental conditions (Bugmann 1994). The model simulates establish-
ment, growth and mortality of individual trees on small independent 
patches, using a minimum of ecological assumptions to capture the in-
fluence of climate and ecological processes on forest dynamics (Bug-
mann 1996; Didion et al., 2009b). ForClim is structured into four 
sub-models: weather, water, plant, and management. The PLANT 
sub-model is the core of ForClim, where establishment and growth of 
tree cohorts (i.e., trees of the same species and age) are simulated based 
on light availability, soil nutrients, browsing intensity and bioclimatic 
indices calculated within the sub-models WEATHER and WATER. Tree 
mortality is modeled as a combination of constant “background” mor-
tality and a stress-induced component. The MANAGEMENT sub-model 
enables the simulation of a wide range of silvicultural treatments such 
as clearcutting, shelterwood, thinning, planting, and others. In this 
study, we applied ForClim version 3.0 (Rasche et al., 2011), com-
plemented by an empirical harvesting algorithm for simulating removals 
of an exact number of stems for every tree species by diameter class 
(single stem removal; see description in Mina et al. (2017)). ForClim is 
currently parameterized for 31 European tree species and has been 
tested for the representation of natural forest dynamics of temperate 
forests of the Northern Hemisphere (e.g., Didion et al., 2009a). 

2.4.2. LandClim 
LandClim is a process-based forest landscape model (Schumacher 

et al., 2004; Schumacher et al., 2006) designed to simulate forest dy-
namics and disturbances at large spatial scales (103 to 106 ha) over long 
periods of time (hundreds to thousands of years). In LandClim, land-
scapes are represented as a 25 × 25 m grid with specific topographic and 
climatic input variables for each cell. Within each cell, a simplified forest 
gap model (Bugmann 2001) simulates establishment, growth, competi-
tion and mortality of trees on an annual time step. Similar to ForClim, 
trees are simulated using a cohort approach (i.e., a computational 
simplification where one representative individual is simulated for all 
trees of the same species and age within a cell (Bugmann 1996)). Tree 
growth is simulated using a logistic growth equation, where 
species-specific maximum growth rate and size are reduced by light 
availability, degree-day sum and a drought index (Schumacher et al., 
2004). Establishment and mortality are stochastic processes. Each year, 
the potential for tree establishment is determined as a function of 
environmental filters (i.e., available light at the forest floor, minimum 
winter temperature, growing degree-day sum, drought index, and 
browsing). Mortality probability is determined as a combination of 
stress, density-dependent and intrinsic mortality. LandClim can simulate 
management in 10-year intervals on defined management areas by 
selecting and removing a percentage of trees fulfilling specified DBH 
constraints. The model has been tested and adapted to the European 
Alps (Briner et al., 2013; Elkin et al., 2013; Temperli et al., 2013), North 
American Rocky Mountains (Schumacher et al., 2006; Schwörer et al., 
2016), and Mediterranean forests (Henne et al., 2015). For this study, 
the individual compartments were simulated in LANDCLIM as inde-
pendent entities without landscape level interactions among them to 
produce results comparable to the stand-level models. 

2.4.3. PICUS 
The forest model PICUS version 1.5 (Lexer and Hönninger 2001; 

Seidl et al., 2005; Irauschek et al., 2017a), henceforth referred to as 
PICUS, is a hybrid of classical gap model components and process-based 
stand-level NPP algorithms (Landsberg and Waring 1997). The spatial 
core structure of PICUS is an array of 10 × 10 m patches with vertical 
crown cells of 5 m in height. Interactions between patches are consid-
ered via a three-dimensional light model and spatially explicit seed 
dispersal. Stand-level NPP is estimated with a model of light use effi-
ciency (Landsberg and Waring 1997), which depends on intercepted 
radiation, temperature, precipitation, vapor pressure deficit, soil water 
and nutrient supply. Distribution of assimilates to individual trees is 
based on the relative competitive success of the individual trees. Tree 
mortality depends on age and stress conditions. Natural tree regenera-
tion considers seed production and distribution, germination and 
establishment. Up to the height of 130 cm seedlings are simulated with a 
height class approach. Beyond that threshold, they are considered as 
individuals in the tree population (Irauschek et al., 2017b). PICUS in-
cludes a flexible management module enabling the implementation of 
silvicultural treatments at tree level depending on tree attributes and 
patch location. The model includes 17 parameterized tree species and 
has been validated (Seidl et al., 2005; Didion et al., 2009a) and applied 
in numerous studies all over Europe (Lexer et al., 2002; Maroschek et al., 
2015; Pardos et al., 2015; Zlatanov et al., 2017). 

2.4.4. SAMSARA2 
SAMSARA2 is an individual-based and spatially explicit model to 

simulate regeneration, growth and mortality of individual trees in mixed 
and uneven-aged mountain forest stands (Courbaud et al., 2015). The 
model builds on the theory that light interception by tree crowns is a key 
driver in uneven-aged stands, because they present a strong vertical 
heterogeneity favoring asymmetric competition between trees and be-
tween the canopy and seedlings. In SAMSARA2, competition for light 
within a stand is calculated based on light ray interception by tree 
crowns. SAMSARA2 has been calibrated empirically for silver fir and 
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Norway spruce stands within the montane elevation belt of the Alps in 
France. Ecological factors other than light, such as climate and site 
conditions are not directly taken into account. Fertility of the site is 
taken into account indirectly through the value of the different de-
mographic parameters. According to Courbaud et al. (2015) the model 
should be recalibrated if applied under different site conditions. Annual 
diameter increment of individual trees depends on their size and the 
amount of light intercepted by their crown during the growing season. 
Natural mortality depends on tree diameter and a competition index 
defined as the basal area of larger trees within a radius of 15 m. Seeds are 
produced by adult trees and germination, growth and survival of seed-
lings depend on the light reaching the ground calculated in the center of 
25 m2 cells. Trees participate in light interception above DBH of 7.5 cm. 
Specific management algorithms allow the simulation of detailed silvi-
cultural strategies, varying both the characteristics of harvested trees 
and their spatial arrangement within a stand (Lafond et al., 2012; 
Lafond et al., 2014). 

2.4.5. SIBYLA 
The SIBYLA model (Fabrika 2005) is based on the SILVA simulator 

(Pretzsch et al., 2002). It is an empirical, distance-dependent ecological 
niche-based model that simulates the growth of individual trees. The 
expected height increment is estimated from the potential height 
increment of the tree and a multiplier, which characterizes the effects of 
competition, soil and climatic conditions (see Pretzsch and Kahn 1998). 
SIBYLA was parameterized and validated using forest inventory data 
from Germany, Switzerland and Slovakia. The model is parameterized 
for five main European forest tree species – Norway spruce, silver fir, 
Scots pine, European beech and oak (Quercus sp.); other species can be 
simulated on the basis of their ecological and morphological similarity 
with the aforementioned species and using calibration functions. The 
model consists of sub-models for mortality, competition, growth, 
regeneration and thinning and a stand structure generator. Growth re-
sponses to environmental drivers (growing degree-days, annual tem-
perature amplitude ( ◦C), mean air temperature ( ◦C) and precipitation 
in the growing season (mm), De Martonne (1925) index of aridity, soil 
moisture and site nutrient status) were formalized according to Kahn 
(1994). The model can simulate several cutting and thinning techniques 
typically applied in Central Europe (Fabrika and Ďurský 2005). 

2.5. Simulation scenarios 

2.5.1. Small tree initialization 
For trees smaller than 10 cm DBH no information was available. 

However, most forest models consider trees of smaller sizes (in LandClim 
from DBH 5 cm, ForClim and SIBYLA from height 1.3 m and in PICUS 
from 10 cm seedling height). To allow a harmonized initialization of 
those models, two scenarios were defined for small tree initialization: (i) 
no small trees (A1, Table 1); (ii) small trees initialized using the 
threshold of 130 cm seedling height (A2). For the latter, the regeneration 
sub-model of SIBYLA (Fabrika 2005) was employed to estimate the 
initial number of trees in 1963 for diameter classes not covered by the 
historical inventory data (DBH 0–5 cm and 5–10 cm; see details of the 

process in the Supplementary material) for use in all models. 

2.5.2. Browsing by ungulates 
Over the observation period (1963–2013), there was a considerable 

influence on regeneration by ungulate browsing (Klopcic et al., 2010). 
Because consistent browsing data was not available for each measure-
ment period, browsing intensities per species over the entire simulation 
period were estimated based on detailed browsing inventories carried 
out between 1992 and 2000, expert knowledge and historical deer 
census data. To consider the uncertainties in browsing parameters, a 
total of three browsing scenarios were defined (B1, B2 and B3; see 
Table 1). Further details are given in Table SM4. 

2.5.3. Harvesting 
The historical register of harvests separately accounted for sanitary 

and regular logging. This means that harvests included, at least partly, 
dead or “near dead” trees (i.e. sanitary fellings). According to internal 
reports from the Snĕžnik region, there is the tendency that in com-
partments with longer extraction distances less sanitary harvests are 
carried out due to economic reasons. This poses several problems for the 
specification of harvested trees in the simulations. To consider the po-
tential effects of different modes of selecting trees for extraction, two 
harvesting scenarios were implemented: (i) only living trees harvested 
(C1); (ii) in a sanitary management scenario trees that had died in the 
simulations in the two years preceding a planned harvest were prefer-
ably selected for harvest (C2). 

2.6. Analysis approach 

We compared observed basal area in 1963 with the initial state of 
compartments in the model simulations (i.e., initial state), 1983 (except 
for compartment 17A, that was first remeasured in 1973; for simplicity 
we refer to the first remeasurement date in the results as “1983′′ only) 
and 2013 with simulated basal area using the root-mean-square error 
(RMSE) and Nash-Sutcliffe Efficiency (NSE). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑9

i=1(observedi − simulatedi)
2

9

√

(1) 

The root-mean-square error represents the square root of the 
quadratic mean of the differences between predicted (simulated) and 
observed basal areas for the 9 forest compartments (i) (Eq. (1)). The 
RMSE is always non-negative, where a value of 0 indicates a perfect fit to 
the data. RMSE can be related to the standard deviation of the measured 
values to provide a standardized index where values less than half the 
standard deviation may be considered low (Singh et al., 2004). 

ME =

∑9
i=1(observedi − simulatedi)

9
(2) 

As an additional bias metric, we show the mean error (ME) (Eq. (2)). 

Table 1 
Simulation scenario overview. N = total number of factorial scenario combinations. Scenarios implemented by a model are marked by a tick.  

Factor Code Scenario ForClim LandClim PICUS SAMSARA2 SIBYLA    
N = 6 N = 6 N = 12 N = 12 N = 12 

Initialization of small trees A1 no small trees ✓ ✓ ✓ ✓ ✓ 
A2 small trees initialized ✓ ✓ ✓ ✓ ✓ 

Browsing by ungulates B1 no browsing ✓ ✓ ✓ ✓ ✓ 
B2 current browsing ✓ ✓ ✓ ✓ ✓ 
B3 1/3 browsing ✓ ✓ ✓ ✓ ✓ 

Harvesting C1 regular logging 
(only living trees) 

⨯ ⨯ ✓ ✓ ✓ 

C2 sanitary and regular logging ✓ ✓ ✓ ✓ ✓  
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NSE = 1 −

∑9
i=1(observedi − simulatedi)

2

∑9
i=1

(

observedi − x observed

)2 (3) 

The Nash-Sutcliffe Efficiency is a normalized statistic that de-
termines the relative magnitude of the residual variance compared to 
the variance in the measured data (Nash and Sutcliffe 1970) (Eq. (3)). 
NSE takes on values from -∞ to 1. Values close to 1 correspond to a 
perfect match of data and simulations. NSE of 0 indicates that the model 
predictions are as accur99ate as the mean of the observed data and 
values below 0 indicate that the observed mean is a better predictor than 
the model. The denominator in Eq. (3) determines to some extent the 
calculated NSE values. Because in the current study forest compartments 
were managed with an uneven-aged continuous cover regime, the 
variation of the observed basal area values was small and consequently 
to achieve high NSE values difficult. The R-package “hydroGOF” 
(Zambrano-Bigiarini 2017) was applied to calculate NSE. 

DDE =
1
2
∑14

j=1

⃒
⃒
⃒
⃒
n observedj
N observed

−
n simulatedj
N simulated

⃒
⃒
⃒
⃒ (4) 

To compare observed and simulated DBH distributions, we used the 
Diameter Distribution Error (DDE), described as “total variation dis-
tance index” in Levin et al. (2009) (Eq. (4)), where j are 14 diameter 
classes of 5 cm width (starting at 10 cm), n is the stem number per ha per 
diameter class, and N is the total sum of trees per ha (see also Saad et al., 
2015). The sum of the differences of the relative frequency in the 
diameter classes is multiplied by ½ to scale the error between 0 and 
100%, with optimum DDE at 0%. DDE was chosen because it is a 
distribution-free measure that calculates the diameter distribution error 
independent of the total number of trees. The diameter classes were the 
same as those in the inventory records. 

For each compartment we calculated tree volume for the three 
measurement years, for all trees that had died during the simulations as 
well as for the harvested trees in a standardized approach by using local 
height curves (Table SM2) and individual tree stem volume functions 
(Pollanschütz 1974) to compare periodic volume growth and mortality, 
while avoiding possible biases due to biomass and volume estimation 
methods used by individual forest models only (Thurnher et al., 2013). 

Total Growthp = T Stockp(end) − T Stockp(begin) +
∑

Harvestp

+
∑

Mortalityp (5) 

The total periodic production of timber (Total Growth) is calculated 
with (Eq. (5)). For a specific period (p), timber stock (T Stock) corre-
sponds to the standing tree volume, Harvest is the standing tree volume 
of trees harvested in period (p) and Mortality is the standing tree volume 
of trees that had died during period (p). 

2.7. Simulation protocol 

The modeling groups jointly defined the scenario settings (cf. 
Table 1) and received the same data consisting of (i) tree data to 
initialize simulation stands representing the forest compartments in 
1963, (ii) site and soil attributes, (iii) daily weather data for the period 
1963–2013, and (iv) historical harvest data for the period 1963–2013. 
Each group performed the simulation runs (see Table 1) and delivered 
the model output data in a harmonized format to the lead author, who 
aggregated and analyzed the data. Tables SM1 and SM2 show site at-
tributes available to the modeling groups and aggregated information on 
tree and harvesting data. 

3. Results 

3.1. Forest model initialization performance 

Total basal area of trees with DBH above 10 cm in 1963, as initialized 
in PICUS, SAMSARA2 and SIBYLA, matched the observations very well 
(Fig. 1a). RMSE was 0.3 m2 ha− 1 for PICUS, 0.2 m2 ha− 1 for SAMSARA2, 
and 0.7 m2 ha− 1 for SIBYLA (Table SM8). Initial basal area in LandClim 
showed the highest absolute deviations (RMSE 6.9 m2 ha− 1), with lower 
basal area in all compartments compared with the inventory in 1963. 

A comparison of initial DBH distributions in the models and the in-
ventory in 1963 revealed a similar picture (Fig. 1b). The diameter dis-
tribution errors (DDE) for SAMSARA2 were below 1% and for PICUS and 
ForClim below 2%, with one department as exception for ForClim with 
DDE over 4%. DDE values for SIBYLA were between 1.5% and 3.5% 
indicating good agreement with the 1963 inventory. LandClim had 
moderate DDE values from 4 to 9%. Inspection of LandClim diameter 
distributions revealed that most of the mismatch in diameter structure 
occurred in the high DBH classes. 

3.2. Simulation of compartment development 

Starting with the initial compartment characteristics (see 3.1 above), 
the models simulated forest development according to the scenarios in 
Table 1. In Fig. 2 the simulated basal area development for each model is 
shown per compartment and compared to the inventory records. Most 
models slightly underestimated mean compartment basal area after 50 
simulation years in 2013: ForClim at 27.0 m3ha− 1, SAMSARA2 26.3 m3 

ha− 1, PICUS 26.1 m3 ha− 1 and SIBYLA at 25.5 m3 ha− 1 versus the mean 
inventory value of 28.4 m3 ha− 1. On average LandClim slightly over-
estimated basal area at the end of the simulation period in 2013 (29.3 m3 

ha− 1). The mean error (ME) over all scenarios and compartments for the 
models was − 3.0 m3 ha− 1 (ForClim), − 3.2 m3 ha− 1 (PICUS), − 1.6 m3 

ha− 1 (SAMSARA2), − 2.5 m3 ha− 1 (SIBYLA) and +3.2 m3 ha− 1 for 
LandClim. More details on simulated basal area are shown in Fig. 3. 

Overall, SAMSARA2, SIBYLA and PICUS showed good model per-
formance (NSE > 0.5; mean RMSE < 5 m2 ha− 1) with PICUS being the 
only model performing well in both observation periods. LandClim had 
negative NSE values in both periods, meaning that the mean of the ob-
servations was a better predictor than the model. ForClim had the worst 
of all observed NSE values in 2013 (ranging from - 1.5 to − 1.8), but NSE 
was highly influenced by poor performance in compartment 17A. 
Interestingly, this was the only compartment dominated by beech, while 
in the other compartments silver fir was dominating. Also other models 
(SIBYLA and SAMSARA2) showed the largest deviations from the 
observed values in compartment 17A for the observations in 2013. 

It is interesting to look at the sensitivity of the models to the scenario 
assumptions. Overall, the variation in model output, as triggered by 
scenario A (initialization) and B (browsing), was smallest for LandClim 
(2% of the mean result) and largest for SAMSARA2 (8%); relative range 
in output for ForClim, PICUS and SYBILA was approx. 4 to 6% (Fig. 4). 
Adding scenarios C (harvesting mode) increased the variation to 24% 
(SAMSARA2), 11% (PICUS) and 6% (SYBILA) of the mean output (see 
also Figure SM1 and Table SM8). 

Comparing simulated and observed diameter distributions at 
different time points is a rigorous test of the ability of the models to 
project forest structure over the 50-year period. Both in 1983 and 2013, 
LandClim showed the largest mean DDE value (23.6%, 69.8%) and 
ForClim the lowest (13.7%, 29.8%), with SYBILA, SAMSARA2 and 
PICUS having similar DDE values as ForClim. For all models DDE 
increased from 1983 to 2013 (Fig. 5). 

What was the scenario that produced the best outcome with each of 
the five models? To answer this question the mean NSE and RMSE 
related to basal area over the entire simulation period were calculated 
for each simulation scenario and for each model the scenario with the 
maximum NSE was selected as “best” scenario” (Table SM6). In a similar 
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procedure, mean DDE statistics were calculated for the entire simulation 
period and the scenario with the lowest DDE per model was selected 
(Table SM6). Regarding the simulated diameter distributions, scenario 
A2, which included small trees in the initialization, resulted in more 

accurate simulated diameter distributions for all models. The scenario 
assumptions that produced the best overall match with regard to basal 
area differed among the five models. While for ForClim and LandClim 
“no browsing” (B1) combined with “sanitary management” (C2) pro-
duced better results, for PICUS, SAMSARA2 and SIBYLA the browsing 
pressure as observed in 2013 (B2) in combination with sanitary man-
agement (C2) resulted in more accurate results. For all models the two 
error statistics NSE and RMSE consistently ranked the same scenario at 
the top. 

3.3. Realization of harvests 

According to the harvest records, the compartments were treated 
regularly in an interval of 10 to 20 years. Moreover, in some compart-
ments sanitation logging occurred almost every year (e.g., several op-
erations in compartment 40C between 1985 and 1990 or in 
compartment 2C in the years 1980 to 1995) (see Fig. 2). When 
comparing the diameter structure of simulated harvests with the re-
cords, all models except LandClim performed well (not shown) with 
SYBILA showing the best match of simulated and observed diameter 
distribution of harvested trees. For all models, deviations occurred 
mainly in the smaller diameter classes below 20 cm DBH. 

3.4. Total volume production 

Utilizing the harvest records, the periodic harvest volumes (Harvest) 

Fig. 1. Statistics for initialization of nine compartments (scenario A2; small trees initialized). Left (a): Deviation of observed and initialized basal area per hectare 
(trees > 10 cm DBH). Right (b): Diameter Distribution Error (DDE), maximum whiskers range is 1.5 times the interquartile range. 

Fig. 2. Trajectories of simulated basal area development from 1963 to 2013 
showing the scenario with the lowest error (NSE) in 2013 for each model. 
ForClim: A1 B1 C2, LandClim: A1 B1 C2, PICUS: A2 B3 C2, SAMSARA2: A2 B2 
C1, SIBYLA: A1 B3 C1. Black dots denote inventory records. 

Fig. 3. Error indicators for basal area per model in 1983, 2013, and cumulated for both periods (1983 & 2013) over all compartments and scenarios. Left (a): Nash- 
Sutcliffe Efficiency (NSE). Right (b): Root Mean Squared Error (RMSE). N = 6 (scenarios). 
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can be calculated for the historical period, while tree Mortality which has 
not been extracted and thus is not included in Harvest is not known. 
Consequently, no observed Total Growth could be calculated for the nine 
study compartments. However, for comparison we could retrieve the 
local total mean annual volume growth from forest management plans 
(about 9 m3 ha− 1 yr− 1). This general estimate can be compared with 
Total Growth according to Eq. (4) for each model simulation. From Fig. 6 
it is evident that there are differences among the models. Compared with 
the local estimate, ForClim, SAMSARA2 and SIBYLA simulated some-
what lower Total Growth (5.6, 7.0, 7.1 m3ha− 1yr− 1), LandClim is clearly 
overestimating (15.7 m3ha− 1yr− 1), and PICUS is closest to the reference 
value of 9 m3ha− 1yr− 1 (8.4 m3ha-1yr− 1). SAMSARA2 and SIBYLA 
reproduced the recorded harvest volumes accurately. PICUS and For-
Clim show only minor underestimates, whereas LandClim clearly over-
estimated Harvests. Large differences between the models are visible 

regarding Mortality. Here, ForClim, SAMSARA2 and SIBYLA clearly 
simulated much lower tree mortality (ForClim 0.9 m3ha− 1yr− 1, 
SAMSARA2 1.3 m3ha− 1yr− 1 and SIBLYA 2.2 m3ha− 1yr− 1) than Land-
Clim (5.1 m3ha− 1yr− 1) and PICUS (3.9 m3ha− 1yr− 1). The effect of the 
sanitary management scheme, causing a shift of volume from Mortality 
to Harvest, is small. Details for both inventory periods are shown in Table 
SM7. 

4. Discussion 

4.1. Assessment approach 

One major challenge for increasing the acceptance of simulation 
tools for decision support is the objective validation of models, to build 
trust in the validity of model output (Muys et al., 2011). Multi-model 
evaluation exercises offer a great opportunity to compare detailed 
model outputs and point out differences, strengths and deficiencies. 
Recently studies have started to quantify parametric uncertainty (Hartig 
et al., 2012), and some results exist on the contributions of model 
sub-processes to overall parametric uncertainty (Augustynczik et al., 
2017), but the quantification of structural uncertainty is less advanced. 

A prerequisite for multi-model evaluation studies is that the 
participating model groups are provided with identical site, stand and 
climate information and follow a harmonized protocol that avoids spe-
cific fitting of model settings to local conditions. In a comparative 
analysis of 15 forest models with regard to model sensitivity to different 
tree mortality algorithms, Bugmann et al. (2019) refrained from having 
all participating models run under identical conditions. However, this 
approach adds another source of uncertainty and makes it even harder 
to track those model sub-processes that contribute most to the variation 
in model output and to respond to the question of why a specific model 
does better or worse in a specific situation. 

The historical long-term compartment-based dataset, in combination 
with management records as used in this study, offered great potential to 
test models in species-rich forest ecosystems in realistic management 
contexts. Inventories carried out by forest enterprises usually do not 
fulfill the criteria for long term model evaluation exercises. Here the 
focus usually lies on cost efficiency and less on continuous long-term 
datasets. Methodologies usually switched from full calipering of trees 
over wide forest areas to statistically more advanced and less cost 
intensive sampling methods starting from the 1950s onwards. As a 
result, continuous datasets consisting of tree data with sufficient 

Fig. 4. Variation in basal area in the year 2013 as simulated in the scenarios 
from Table 1. Mean range of scenario results normalized by the mean scenario 
result for 2013. Scenario codes: A = Initialization of small trees, B = Browsing 
by ungulates, C = Harvesting. 

Fig. 5. Diameter distribution error (DDE) per model in 1983 and 2013 for all 
simulated scenarios and compartments. 

Fig. 6. Simulated yearly Harvests, Mortality and calculated Total Growth for the 
period 1963–2013 (mean over 9 compartments). Dashed line shows regional 
Total Growth estimate, dotted line shows historical harvests (mean over 9 
compartments). For ForClim and LandClim bars show the results for scenario 
A2-B2-C2 (small tree initialized, current browsing, sanitary and regular log-
ging). For PICUS, SAMSARA2 and SIBYLA bars show mean values for scenario 
A2-B2-C1 (regular logging) and A2-B2-C2 (sanitary and regular logging), the 
whiskers indicate results for C1 and C2. 
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sampling densities over a long time period are very scarce. The tree and 
harvest data from the presented case study cover a remarkably long 
period of 50 years. They represent entire compartments and are thus 
better representatives of real forests compared to small plots of large- 
scale forest inventories (see Huber et al., 2013). However, to fully un-
derstand forest development in the nine compartments, information on 
tree mortality, stand structural information and tree regeneration would 
be essential. In an attempt to frame sources of uncertainty in the eval-
uation data, 12 scenarios were defined to specify explicit assumptions on 
the initial state of regeneration, browsing pressure by ungulates over the 
monitoring period and the inclusion of tree mortality in harvesting de-
cisions (Table 1). What could be considered a weakness of the evaluation 
data was turned into a strength of the assessment approach because it 
added rigor to the comparison of model output and observations. It also 
facilitated analysis of the sensitivity of the models to assumptions that 
have to be made quite often, when data and model input from decades 
ago are used. 

4.2. Model initialization 

A first crucial step in practical model applications is to initialize 
stand structures from available information. To our knowledge, the 
ability of models to create realistic initial tree populations has not been 
considered before. All models involved in this study include special 
routines for initialization to avoid stand structures that are not 
compatible with internal processes dealing with competition for re-
sources and space and may therefore result in undesired behavior of 
simulated tree populations, especially in the first simulation years (see 
Supplementary material). Generally, these routines are most important 
for complex forest stands with high tree density, vertical tree layers, 
diverse species mixtures, many size classes and patchy spatial structure. 
In the model SIBYLA, for example, the models internal consistency of the 
virtual tree population is evaluated by estimating the suitability of the 
tree positions according to the nearest and second nearest neighbor trees 
using a probabilistic approach (Pretzsch 1993). For rejected trees, new 
coordinates are generated until microstructural requirements are ful-
filled. The PICUS model operates in a similar way within its 10 × 10 m 
resolution to avoid the initialization of non-viable tree neighborhoods. 
The gap model ForClim uses an algorithm to optimize the leaf area of 
virtual trees to avoid excessive shading. SAMSARA2 avoids initialization 
problems by using a uniform distribution for estimating coordinates, 
which may visually result in very regular stand structures. In LandClim, 
compartments are initialized spatially explicit at the level of the simu-
lation cells (25 by 25 m). The effort that has been put into generating 
realistic initial forest states shows that, although so far not much 
attention has been paid to this issue, (i) creating realistic tree population 
structures may have crucial implications for simulated short- to midterm 
population behavior, and (ii) indicates the relevance of structural in-
formation and tree coordinates (see Table SM3). For instance, PICUS, 
SAMSARA2 and SIBYLA could have directly utilized tree coordinates for 
initializing forest stands. All models except LandClim were able to 
generate realistic forests regarding basal area density and diameter 
structure (compare Fig. 1 and Table SM8 for an overview). The land-
scape model LandClim, which had not been developed to simulate 
fine-grained tree populations at population level, initialized forests with 
substantially lower basal area compared to observations and also did not 
match well the initial diameter structure of the validation data set. 

4.3. Forest simulation results 

In simulating managed mixed mountain forests over five decades, 
beyond growth, regeneration and mortality of trees, also harvests and 
the response of tree populations to these human disturbances need to be 
mimicked realistically. The results showed that spatially explicit indi-
vidual tree-based models performed better in simulating basal area 
development than the non-spatial gap model ForClim, and, not 

surprisingly, the landscape model LandClim. Overall, the best per-
forming models in our study yielded RMSE values for basal area over a 
simulation period of 50 years, which are about 10 to 12% of the 
compartment basal area. This simulation result is comparable to the 
range of basal area mean error values from large-scale forest inventories 
(e.g., Næsset 2007). The mean error (ME) values over all scenarios 
indicated that all models on average underestimated the observed basal 
area values by about 10% of the mean observed values, except the 
LandClim model which yielded a slightly larger positive bias. 

An even greater challenge for forest models is to capture the devel-
opment of the size structure of the tree population. With the exception of 
LandClim, all models performed reasonably well. Furthermore, the 
study did not confirm two general beliefs: First, and interestingly, 
empirical models (SYBILA, SAMSARA2) did not perform significantly 
better regarding the accurate prediction of DBH structure than the 
process-based models ForClim and PICUS (compare Guisan and Zim-
mermann 2000; Fontes et al., 2011). A similar finding for the PICUS 
model had already been reported in Seidl et al. (2005). Second, none of 
the models had been developed for Dinaric mountain forests. As the 
model evaluation protocol avoided the calibration of the tested models 
to local tree growth data, the expectations towards accurate model re-
sults in simulating 50 years of tree growth were low. However, the 
stand-level models performed reasonable (compare Fig. 7). The spatially 
explicit models PICUS, SAMSARA2 and SYBILA performed overall better 
than the non-spatial gap model ForClim and showed very concordant 
results. On the other hand, ForClim showed the best performance 
regarding the diameter distributions. 

The current study clearly showed that a model should perform well 
in a series of aspects beyond tree growth that drive forest development. 
Over the 50-year simulation period, the interacting processes tree 
growth, regeneration, mortality and tree selection and harvesting 
determine the standing stock as well as the DBH distribution at a specific 
point in time. Hülsmann et al. (2018) point out that mortality sub-
routines in forest models are typically rather fundamental and lack 
empirical basis. In a recent study Bugmann et al. (2019) concluded that 
the sensitivity of forest models to changes in mortality algorithms is 

Fig. 7. Relative model performance scaled to the respective maximum and 
minimum values. Maximum BA accuracy and DDE accuracy in origin (0/0). BA 
accuracy = sum of relative RMSE for initialization and Nash-Sutcliffe Efficiency 
(NSE) for simulation results (pooled 1983 and 2013). DDE accuracy = sum of 
relative diameter distribution error (DDE) for initialization and simulation re-
sults (mean 1983 and 2013). The circle diameters correspond to the relative 
variation resulting from scenario assumptions (results 2013, scenarios A 
(Initialization of small trees) and B (Browsing by ungulates). Data in Table SM8. 
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larger than the sensitivity to climate change signals. Unfortunately, the 
testing data used for our study did not include tree mortality. The extent 
to which harvests included a share of natural tree mortality was also not 
known. However, the scenarios C1 (harvests include only living trees) 
and C2 (sanitary management, harvests also include dead trees) allowed 
to estimate the effect of the underlying assumptions. Our results showed 
that a seemingly simple process such as harvesting trees might produce 
quite different results among the models. 

All models except LandClim could handle harvest prescriptions on an 
annual basis. However, harvest algorithms within the models differ in 
the way they handle tree removals in specific DBH-classes. Some algo-
rithms search for specific trees (size and species) in the simulated forest. 
As differences between observed and simulated DBH-structures increase 
with increasing simulation length, more flexible algorithms (e.g., trees 
may be taken from neighboring DBH-classes) may be beneficial, espe-
cially for very detailed harvest operations such as single-tree or sanitary 
management records (Mina et al., 2017). Our results indicated that 
harvest algorithms incorporating multiple criteria, such as basal area, 
tree diameter and diameter distributions, can improve overall modeling 
accuracy (Lafond et al., 2012). The importance of consistently consid-
ering natural tree mortality in harvest algorithms will even increase with 
increasing relevance of disturbances in future climates (Seidl and 
Rammer 2017). 

Framing the uncertainty in the evaluation data (initialization of 
small trees, browsing by ungulates, tree selection for harvesting) by 
means of 12 scenarios proved to be an adequate approach to (i) consider 
data uncertainty, and (ii) test the sensitivity of the models towards the 
scenario assumptions (see Figure SM1 and Tables SM5 and SM6). It was 
interesting to note that the browsing scenarios (B1, B2, B3) had a strong 
influence on the predictions, and were predominantly affecting diameter 
structures, whereas basal area was less affected. SAMSARA2 seemed to 
be particularly sensitive to the harvesting assumptions. What is a useful 
threshold for model sensitivity? This question cannot be answered 
easily. As a general rule, the sensitivity of a model to a driving gradient 
must allow to reproduce observable data along the gradient (e.g., Lexer 
and Hönninger 2004). Interestingly, the average variation, caused by the 
full set of scenarios (as simulated by SAMSARA2, PICUS and SIBYLA), is 
approximately in the same order of magnitude as the error in basal area 
or volume estimates of large-scale forest inventories. 

LandClim, the only landscape model included in the comparison set, 
delivered satisfactory estimates of basal area development per 
compartment, though it operates on coarser resolutions regarding 
initialization, management and growth simulation, and was designed to 
simulate landscape level disturbances and processes that were not the 
focus of this study. The advantage of landscape models is that they can 
be used to complement stand-level models to explore forest develop-
ment at multiple spatial scales from stand to landscape scale, which is 
gaining importance with growing confidence that disturbance regimes 
will intensify under a warming climate. Interacting disturbance agents 
operate at multiple spatial scales, which is beyond the reach of stand- 
level models (e.g., Elkin et al., 2013; Hlásny et al., 2019). 

5. Conclusions 

Several conclusions can be drawn from this study: 
First, a strong effort should be made by research institutes and forest 

owners, to access and store historical inventory datasets and harmonize 
contemporary inventories with historical data to be able to capitalize on 
the benefits of a long consistent time series. In particular, detailed har-
vest records are crucial to understand time series data of stocks, which 
are the usual monitoring focus. Knowing harvested trees by tree species 
and by status (live, dead) would be a huge leap forward for further 
development and testing of forest ecosystem models. 

Second, there is no clear hierarchy between more empirical or more 
process-based models regarding the accuracy of stand development 
projections. 

Third, individual-based models are more precise for stand-level 
predictions than the tested landscape model LandClim, but the latter 
performed reasonably well at the stand scale, qualifying it for a com-
plementary application at the landscape scale. This serves as a great 
example for a finding from a model intercomparison study, where the 
ultimate goal is not that every contestant shows excellent performance 
regarding standard outputs. More important is a critical comparison 
between models to differentiate why certain models are better under 
specific conditions observed in the case study for specific outputs. 
Following a detailed description of underlying model assumptions and 
objective evaluation of outputs, recommendations can then be given 
regarding the specific applicability of models and their limitations. 
However, model performance demonstrated in a specific ecological and 
management setting should not be generalized carelessly to diverging 
conditions. Repeated successful model evaluation experiments in 
different settings will build trust in model performance. 

Fourth, in model evaluation studies a comprehensive set of model 
output variables should be assessed. There is a fast-growing demand by 
decision makers for reliable prediction of stand structural features 
beyond volume or basal area, because for forest management planning 
ecosystem service provisioning is based on indicators on species 
composition and structure of the tree population (e.g., Maroschek et al., 
2015). The current study has shown that there are forest models avail-
able that qualify for forest management decision support. 

Fifth, as a very relevant mission joint model intercomparison and 
evaluation studies compare currently available ecosystem models by 
challenging them with applications in novel case study settings and 
foster scientific collaboration among the modeling groups. This prepares 
the ground for multi-model applications in decision support, a prereq-
uisite to quantify and explain uncertainty from model assumptions. 
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Härkönen, S., Mäkinen, A., Tokola, T., Rasinmäki, J., Kalliovirta, J., 2010. Evaluation of 
forest growth simulators with NFI permanent sample plot data from Finland. For 
Ecol Manage 259, 573–582. https://doi.org/10.1016/j.foreco.2009.11.015. 

Hartig, F., Dyke, J., Hickler, T., Higgins, S.I., O’Hara, R.B., Scheiter, S., Huth, A., 2012. 
Connecting dynamic vegetation models to data - an inverse perspective. J Biogeogr 
39, 2240–2252. https://doi.org/10.1111/j.1365-2699.2012.02745.x. 

Henne, P.D., Elkin, C., Franke, J., Colombaroli, D., Caló, C., La Mantia, T., Pasta, S., 
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