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 A B S T R A C T

The Spectral Variation Hypothesis (SVH) proposes that spectral heterogeneity (SH), derived from optical data, 
can serve as a proxy for estimating biodiversity. In this study, we tested the SVH across 42 forest plots in 
the Italian Alps using imaging spectroscopy data from the EnMAP satellite. We investigated the relationship 
between SH—quantified using two different metrics, Rao’s Q and the coefficient of variation (CV)—and tree 
species diversity (using Shannon’s H index and species richness). We applied three levels of spectral analysis: 
(1) SH calculated for each individual EnMAP band; (2) SH aggregated across broader spectral ranges (Visible 
-VIS-, Near Infrared -NIR-, and Shortwave Infrared -SWIR-) and (3) SH derived from vegetation indices (VIs). 
These analyses were performed under three spatial approaches: (A) a normal approach assigning equal weight 
to all four EnMAP pixels intersecting a plot; (B) a weighted approach based on the proportional overlap of 
each pixel with the plot area; and (C) a weighted canopy cover (CC)>70% approach, which included only 
plots with CC greater than 70% as derived from airborne laser scanning (ALS) LiDAR data.

Weak to moderate correlations were observed when SH was derived from single bands, with the strongest 
relationships in the NIR (R2 approaching 0.4), followed by the VIS and SWIR regions. A similar trend emerged 
when SH was aggregated across broader spectral ranges, with the highest correlations again found in the NIR 
(R2 up to  0.35). In contrast, lower R2 values were obtained when SH was computed from specific VIs.

The weighted approaches, especially when restricted to plots with CC >70%, consistently yielded higher 
R2 values than the equal-weight approach in all three the spectral analysis. Results were consistent across both 
SH metrics (Rao’s Q and CV), with stronger correlations when species richness was used as the biodiversity 
metric. This work highlights how EnMAP hyperspectral data, despite inherent constraints, can provide valuable 
insights into forest biodiversity monitoring.
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1. Introduction

Despite decades of research, biodiversity remains one of the most 
complex and dynamic scientific frontiers, with countless species and 
interactions still undiscovered (Moura and Jetz, 2021; Cazzolla Gatti 
et al., 2022). Filling these knowledge gaps is essential for understanding 
how ecosystem functions can be managed sustainably, particularly as 
species disappear before their ecological roles are fully identified.

In particular, forest ecosystems are recognized as the most biodi-
verse terrestrial biome, where biodiversity plays a crucial role. Nu-
merous studies have demonstrated that biodiversity within forests en-
hances ecosystem multi-functionality, including increased carbon up-
take (van der Sande et al., 2017) and improved hydrological regulation 
(Esquivel et al., 2020). These ecosystem services, alongside others such 
as nutrient cycling, habitat provision, and climate regulation, highlight 
the essential value of biodiversity in forest ecosystems (Brockerhoff 
et al., 2017).

Typically, biodiversity monitoring approaches rely on expert-led 
field inventories, which, while accurate, are time-consuming, costly, 
and subject to biases (Rocchini et al., 2022). Variability in biodiversity 
monitoring strategies across countries further complicates data stan-
dardization and sharing (Affinito et al., 2024; Moudrỳ et al., 2024a). 
Recently, earth observation has emerged as a robust tool for the mon-
itoring of different aspects of biodiversity, offering uniform, periodic, 
and cost-effective data collection, facilitated by advancements in sensor 
technology and open-access policies for diverse remote sensing data 
(Nagendra, 2001; Turner et al., 2003; Cavender-Bares et al., 2022; 
Gatti et al., 2025; Reddy, 2021). Various remote sensing datasets, 
including optical data from aerial (Gholizadeh et al., 2019; Schweiger 
and Laliberté, 2022), UAV (Rossi et al., 2021b; Torresani et al., 2023a), 
and satellite platforms (Rossi et al., 2021a; Pacheco-Labrador et al., 
2022), as well as LiDAR (Moudrỳ et al., 2024b) and radar data (Bae 
et al., 2019), have demonstrated remarkable potential in estimating 
biodiversity metrics in diverse ecosystems (Hakkenberg et al., 2018).

Focusing on optical remote sensing data, numerous methodologies 
have been developed to use diverse optical images for estimating 
biodiversity metrics across ecosystems. Some methods focus on directly 
mapping specific targets, such as individual tree species or populations 
(Onishi and Ise, 2021). Others assess the functional component of 
biodiversity by estimating plant functional traits (Zhao et al., 2021) 
or by mapping habitats based on climatic/topographic conditions and 
derived land cover types (Foody, 2008; Stein et al., 2014). Additionally, 
some approaches explore relationships between in-situ biodiversity and 
spectral reflectance patterns observed in optical imagery (Turner et al., 
2003; White et al., 2010). The Spectral Variation Hypothesis (SVH) 
represents this latter group. SVH utilizes spectral heterogeneity (SH), 
namely the variability of pixel values, to test, analyze and predict 
biodiversity patterns (Torresani et al., 2024c). This approach states 
that the diversity in spectral responses detected by optical sensors can 
serve as a proxy for estimating biodiversity, including alpha diversity 
(within-site diversity), beta diversity (variation between sites), and 
gamma diversity (total landscape diversity). Specifically focusing on 
alpha diversity, the hypothesis suggests that areas with high SH in 
remotely sensed imagery correspond to greater environmental hetero-
geneity (and ecological niche diversity), which supports higher species 
richness compared to areas with low SH (Palmer et al., 2002; Rocchini 
et al., 2010; Torresani et al., 2024c).

The SVH has been extensively tested across diverse ecosystems, 
employing various types of optical data, testing different SH metrics 
(e.g. coefficient of variation CV Gholizadeh et al., 2019, the Rao’s 
Q index Thouverai et al., 2021, the mean distance from centroids 
Rocchini et al., 2004), and methodological approaches. As highlighted 
in the recent review of the SVH by Torresani et al. (2024c), most studies 
testing the SVH have reported significant results, supporting its valid-
ity across diverse ecosystems. However, some studies have reported 
nonsignificant results (Schmidtlein and Fassnacht, 2017; Jung, 2022; 
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Lopes et al., 2017), highlighting that the applicability and reliability 
of the SVH can be significantly influenced by various factors. These 
include the selection of SH metrics, the ecosystem being assessed, and 
the habitat type (Fassnacht et al., 2022). Additional factors such as the 
design of moving windows (Conti et al., 2021), field data collection 
methodologies—including the choice of diversity indices (e.g., species 
richness or Shannon’s H index) and sampling design—vegetation phe-
nology (Perrone et al., 2024), and structural complexity (e.g., biomass 
Rossi et al., 2021b, density Van Cleemput et al., 2023, diversity in 
plant height Conti et al., 2021 and soil characteristics Gholizadeh et al., 
2018a) further complicate the application of the SVH. These elements 
influence both spectral reflectance and biodiversity patterns, making 
it crucial to account for these variables in future studies. Lastly, and 
maybe the most important factor is the characteristics of optical images, 
such as spectral (Wang et al., 2018b, 2022a), spatial (Torresani et al., 
2018; Rossi et al., 2021b), and temporal resolution (Torresani et al., 
2019; Wang et al., 2022b; Rossi et al., 2024).

On this topic, studies have explored hypothesis using data from 
different platforms, including UAVs (Rossi et al., 2021b), airborne 
systems (Wang et al., 2016), and satellites (Perrone et al., 2023), using 
multispectral and hyperspectral data. These studies demonstrate the 
versatility of the SVH but also reveal variability in its effectiveness 
depending on the platform, data characteristics, and methodological 
approach (Torresani et al., 2024c). Focusing on optical spaceborne 
data, several studies have tested the SVH using satellite imagery. Ini-
tially, the SVH was tested with Landsat data. After 2015, Sentinel-2 
has become the most widely-used satellite for biodiversity estimation 
through the SVH, owing to its high spatial, spectral, and temporal 
resolution. Other satellites, such as MODIS (Rocchini et al., 2014), 
WorldView (Mapfumo et al., 2016), QuickBird (Hall et al., 2010) 
and others, have also been employed to test the SVH, though their 
application has been less extensive (Torresani et al., 2024c).

Recently, a new hyperspectral satellite, the Environmental Mapping 
and Analysis Program (EnMAP), has been launched to advance the 
monitoring and analysis of Earth’s surface (Kaufmann et al., 2006). 
Launched in 2022 to provide advanced imaging capabilities, EnMAP 
captures data across a wide spectral range, covering the Visible (VIS), 
Near Infrared (NIR), Short Wave Infrared (SWIR) regions (from 420 nm 
to 2450 nm) with 242 contiguous spectral bands. Each band has a 
spectral sampling interval of approximately 6.5 nm in the VIS and 
NIR and approximately 10 nm in the SWIR, enabling detailed analysis 
of surface characteristics. EnMAP’s spatial resolution is 30 m, and it 
features a swath width of 30 km, making it suitable for large-scale 
environmental and ecological studies (ESA eoPortal, 2025).

Several studies have explored the SVH using spaceborne imaging 
spectroscopy data, particularly from satellites such as DESIS (Rossi and 
Gholizadeh, 2023; Gholizadeh et al., 2022) and Zhuhai-1 (Wang et al., 
2022a). These studies have demonstrated the potential of imaging spec-
troscopy for assessing SH and its relationship with ecological patterns. 
However, to date, no studies have specifically tested the SVH using 
EnMAP data for biodiversity estimation, particularly in the context 
of tree species diversity estimation within forest ecosystems. This gap 
presents a valuable opportunity to explore the application of space-
borne hyperspectral data for detecting species diversity and ecological 
processes in these highly diverse environments.

Another critical factor influencing the relationship between SH 
and species diversity is the interplay between vegetation structure 
(e.g., canopy cover and complexity) of the ecosystem being analyzed 
versus the spatial resolution of the optical data used. When using data 
with a spatial resolution of 30 m, such as EnMAP, there is a risk of 
analyzing forested areas that may also include non-forested patches, 
potentially introducing bias into the results. This issue is particularly 
relevant in heterogeneous landscapes where mixed land cover types 
are more likely to occur within a single pixel. This aspect remains a 
topic of active debate within the context of the SVH, with some recent 
studies already investigating its implications and potential solutions 
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Fig. 1. (A) Location of the plots within the Italian borders. (B) Location of the entire study area with forest sampling plots, with the RGB EnMAP tiles used for 
the analysis shown over a Google Earth image. (C1–C3) Zooms on three sub-areas where the location of individual sampling plots could not be distinguished in 
panel (B). Plot IDs (numeric labels) are indicated in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
(Gholizadeh et al., 2018b; Hauser et al., 2021; Van Cleemput et al., 
2023).

The aim of this study is to investigate whether SH from the new 
German spaceborne hyperspectral mission EnMAP can be applied to 
map tree species diversity in mountain forests of the Italian Alps. Specif-
ically, we examine whether SH, calculated using two widely applied 
indices, Rao’s Q and the CV, is correlated with tree species diversity, 
assessed using two complementary field-based metrics: species richness 
and Shannon’s H index. To comprehensively test the SVH, we applied 
three levels of spectral analysis: (1) SH calculated at the individual 
band level for each of the EnMAP bands; (2) SH aggregated across 
broader spectral ranges—namely the VIS, NIR, and SWIR regions; and 
(3) SH derived from a set of vegetation indices (VIs) that capture 
ecologically relevant traits such as chlorophyll content, water status, 
and canopy structure. Furthermore, to evaluate how spatial detail 
and tree density influence SH–diversity relationships, we tested the 
above mentioned analysis with three different spatial approaches: (A) a 
normal (equal-weight) approach, where each of the four EnMAP pixels 
overlapping a plot was considered equally; (B) a weighted-area ap-
proach, in which pixels were weighted according to their proportional 
overlap with the plot area; and (C) a weighted-area approach restricted 
to high canopy cover (CC), where only plots with CC greater than 
70%—as derived from airborne laser scanning (ALS) LiDAR data—were 
included in the analysis. By exploring these combinations, we aim to 
3 
identify the most effective approach for linking spaceborne imaging 
spectroscopy SH to tree species diversity in forested landscapes.

2. Material and methods

2.1. Study area and field data collection

The study area is located in a portion of South Tyrol, a region in 
northern Italy corresponding to the Autonomous Province of
Bolzano/Bozen. A total of 52 forest sampling plots were used for the 
analysis. The geographic coordinates of the plots were collected using 
an RTK GPS with a positional accuracy of <20 cm, ensuring high-
precision matching with the EnMAP data. The plots are originated from 
different projects that shared a common study design; therefore, no 
unified sampling layout was applied across the entire dataset.  In each 
plot with a radius of 13 m, between 2021 and 2024 all trees with a 
diameter at breast height (DBH) greater than 10 cm were identified and 
categorized by species. Following a preprocessing phase—described in 
detail in subsequent sections, 10 plots were excluded from the analysis 
due to the presence of corrupted or missing spectral bands in the corre-
sponding EnMAP data. Consequently, the final analysis was conducted 
on 42 plots for which both high-quality spectral and field data were 
available (Fig.  1). To evaluate potential spatial autocorrelation among 
plots, we performed a Moran’s I analysis, which indicated no significant 
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spatial autocorrelation. The full results of this test are reported in the 
Appendix.

2.2. In-situ tree species diversity estimation

Using the measurements of individual trees in each sampling plot, 
we calculated two indices of tree species diversity: species richness and 
Shannon’s H.

Species richness was derived by summing the number of tree species 
per each plot, while Shannon’ H (Eq.  (1)) is a widely used metric 
in ecology for assessing alpha diversity that originally emanates from 
information theory. This index incorporates both the abundance of each 
species and the evenness of their distribution within an area, providing 
a more nuanced measure of diversity (Shannon, 1948). 

𝐻 = −
𝑞
∑

𝑖=1
𝑝𝑖 ∗ ln(𝑝𝑖) (1)

where:

- H = Shannon’s diversity index
- q = number of observed species
- 𝑝𝑖 = proportion of individuals belonging to species i relative to 
the total number of individuals in the plot.

2.3. EnMAP data and pre-processing analysis

For this study, we utilized a single EnMAP acquisition collected
on September 9, 2023. The dataset consisted of two adjacent tiles 
(DT0000041009_20230909T102950Z_001 and DT0000041009_
20230909T102950Z_002), both processed to Level 2A (Chabrillat et al., 
2024) on September 10, 2023. The images were downloaded from the 
EnMAP Instrument Planning portal (https://planning.enmap.org/). The 
level 2A products are atmospherically corrected using the official En-
MAP Ground Segment processing chain, as described in the EnMAP L2A 
Processor ATBD (EnMAP Ground Segment Team, 2023). This correction 
includes radiative transfer-based inversion algorithms that retrieve sur-
face reflectance values over land by accounting for atmospheric effects 
such as aerosol scattering and water vapor absorption. Specifically, 
aerosol optical thickness at 550 nm is retrieved using a dense dark 
vegetation approach, while columnar water vapor is estimated per pixel 
with the Atmospheric Pre-corrected Differential Absorption method. 
The resulting surface reflectance values are expressed in percent units. 
Spectral smile correction and interpolation of defective pixels were also 
applied during Level 1B intermediate processing to improve the spectral 
integrity and continuity of the reflectance data.

For each plot, we extracted the reflectance values of the four EnMAP 
pixels surrounding the plot center. The mean reflectance was calculated 
across these four pixels for each spectral band, generating a single 
representative spectral signature per plot. Subsequently, following the 
study of Rossi and Gholizadeh (2023) noisy bands due to sensor per-
formance or suboptimal atmospheric correction were identified and 
removed before further analysis. Specifically, we discarded bands 1–2 
(from 418 nm to 420 nm), bands 79–103 (from 895 nm to 1014 nm), 
bands 131–135 (missing values, from 1342 nm to 1390 nm), bands 
167–175 (from 1967 nm to 2041 nm), and bands 222–225 (from 
2430 nm to 2445 nm). After this preprocessing step, a total of 219 
spectral bands were retained for subsequent analysis. The spectral 
regions excluded and the overall spectral signature after preprocessing 
are illustrated in Fig.  2.
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2.4. Spectral heterogeneity indices

The SH was calculated using two established metrics: Rao’s Q index 
and the CV. The Rao’s Q index (Eq.  (2)) was originally developed by 
Rao (1982) and later proposed by Botta-Dukát (2005) as a functional 
diversity index in ecology. Rocchini et al. (2024) adapted this metric 
for remote sensing applications as a measure of SH, calculated using 
the following formula: 

𝑄 =
𝑁
∑

𝑖,𝑗=1
𝑑𝑖𝑗 × 𝑝𝑖 × 𝑝𝑗 (2)

where:

- 𝑄: Rao’s Q index, used in remote sensing applications.
- 𝑝𝑖 and 𝑝𝑗 : Relative abundance of pixels 𝑖 and 𝑗 in a selected area 
(e.g., region of interest or raster) with 𝑁 total pixels (𝑝𝑖 = 𝑝𝑗 =
1∕𝑁).

- 𝑑𝑖𝑗 : Distance or dissimilarity between pixels 𝑖 and 𝑗, where 𝑑𝑖𝑗 =
𝑑𝑗𝑖 and 𝑑𝑖𝑖 = 0.

In this study, 𝑑𝑖𝑗 was calculated, as done in other studies (Torresani 
et al., 2024a; Pafumi et al., 2023) as the Euclidean distance based on 
a single spectral layer.

The CV (Eq.  (3)) is another commonly used heterogeneity index 
in ecological remote sensing research (Rossi and Gholizadeh, 2023; 
Rahmanian et al., 2023). It was calculated as follows: 
𝐶𝑉 = 𝑆𝐷∕𝑥 (3)

where:

- 𝐶𝑉 : Coefficient of Variation of spectral reflectance.
- 𝑆𝐷: Standard deviation of spectral reflectance values within the 
selected area.

- 𝑥: Mean spectral reflectance value within the selected area.

2.5. Spectral heterogeneity analysis

To assess the relationship between SH and tree species diversity, SH 
was computed with the above-mentioned SH indices (Rao’s Q and CV) 
using three different spectral analyses:

2.5.1. SH at the individual band level
The first analysis aimed to test the SVH using each EnMAP band. 

For all bands (excluding those identified as unsuitable during the band 
selection process), we calculated SH using the Rao’s Q and the CV. 
The resulting SH values were then correlated by linear regression with 
tree species diversity, measured using Shannon’s H index and species 
richness. For each regression, the coefficient of determination (R2) and 
slope were computed to evaluate the strength and direction of the 
relationship between SH and tree species diversity.

2.5.2. SH across spectral ranges
Following the work of Wang et al. (2016, 2018a) we aimed to 

analyze the SVH by assessing the SH across the following spectral 
ranges (rather than individual bands):

- VIS: Covering bands from 400–700 nm.
- NIR: Covering bands from 700–900 nm.
- SWIR: Covering bands from 1000–2500 nm.

SH was computed with a modified CV formula (formula 2.5.2) and a 
modified Rao’s Q formula (formula 2.5.2) indices within each spectral 
region for each plot as follows:

𝐶𝑉 =

∑𝑛
𝜆=1

sd(𝜌𝜆)
mean(𝜌𝜆)
mean 𝑛

https://planning.enmap.org/
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Fig. 2. Mean spectral signature calculated from the average reflectance values of the EnMAP pixels. The shaded gray regions represent the ‘bad bands’ 1–2 (from 
418 nm to 420 nm), bands 79–103 (from 895 nm to 1014 nm), bands 131–135 (missing values, from 1342 nm to 1390 nm), bands 167–175 (from 1967 nm to 
2041 nm), and bands 222–225 (from 2430 nm to 2445 nm) that were excluded from our analysis.
where sd(𝜌𝜆) is the standard deviation of reflectance values across the 
four pixels in each plot for the 𝜆th spectral band, mean(𝜌𝜆) is the mean 
reflectance for the same band and pixels, and 𝑛 is the total number of 
bands in the respective spectral range (Levin et al., 2007; Gholizadeh 
et al., 2018a).

𝑄mean =

∑𝑛
𝜆=1

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑑

𝜆
𝑖𝑗

𝑁2

𝑛
where:

- 𝑄mean: The average Rao’s Q index for a plot across all spectral 
bands.

- 𝑛: The total number of spectral bands in the respective spectral 
range.

- 𝑁 : The total number of pixels in the plot.
- 𝑑𝜆𝑖𝑗 : The pairwise Euclidean distance between reflectance values 
of pixels 𝑖 and 𝑗 for the 𝜆th spectral band.

As for the single band analysis, the resulting SH values were cor-
related with tree species diversity, measured using Shannon’s H index 
and species richness, through linear regression deriving R2 (coefficient 
of determination) and slope.

2.5.3. SH of EnMAP derived vegetation indices
Lastly, we analyzed the SVH by assessing the SH using 10 VIs, 

derived from the following EnMAP bands (see Table  1):
The choice of bands was made by selecting the EnMAP band whose 

central wavelength most closely matched the reference wavelength 
specified in the original index formulation. See Appendix 1 for the 
list of the vegetation index formulas with corresponding EnMAP band 
numbers, and literature references.

For each VI, SH was calculated using both Rao’s Q and CV indices, 
and its correlation with tree species diversity indices (Shannon’s H 
and species richness) was tested, as previously done, through linear 
regression deriving R2 and slope. For CV, the absolute mean was used 
to ensure stable estimates even when VI values were negative.
5 
2.6. Analytical approaches

Each forest plot had a 26-m diameter, while the EnMAP pixel size 
was 30 × 30 m, meaning that the SH calculations were based on the four 
EnMAP pixels intersecting the plot. To account for the misalignment 
between plot size and pixel resolution, we implemented and compared 
three different approaches (Fig.  3):

- Normal - Equal weight approach – Each of the four EnMAP 
pixels intersecting the plot was given an equal weight when 
computing SH.

- Weighted-area approach – Instead of assigning equal weights, 
we calculated the proportional area of the plot covered by each 
pixel and applied these weights when computing SH. This ap-
proach ensures that pixels contributing more to the plot area in-
fluence SH calculations proportionally, reducing bias from pixels 
that are only partially intersected by the plot boundary.
The weighted-area approach was implemented by extracting re-
flectance values from the four EnMAP pixels, calculating the 
proportion of each pixel that overlapped with the field plot, and 
applying these proportions when computing SH using both Rao’s 
Q and CV. This method improves the precision of SH estimates by 
aligning them more closely with the actual area surveyed in the 
field.
For the weighted CV, following the work of Wang et al. (2016, 
2018a) we modified the standard CV formula to account for the 
area proportion (𝑤𝑖) of each pixel within the plot: 

𝐶𝑉weighted =

√

∑𝑁
𝑖=1 𝑤𝑖(𝜌𝑖 − 𝜇𝑤)2∕

∑𝑁
𝑖=1 𝑤𝑖

𝜇𝑤
× 100 (4)

where the weighted mean reflectance (𝜇𝑤) is calculated as: 

𝜇𝑤 =
∑𝑁

𝑖=1 𝑤𝑖 ⋅ 𝜌𝑖
∑𝑁 𝑤

(5)

𝑖=1 𝑖
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Table 1
Vegetation indices used in the study, their primary ecological linkages, key traits, and corresponding formulas based on EnMAP wavelengths (nm). For 
completeness, the same information is also provided in the Appendix with the corresponding EnMAP band numbers and references.
 Index Primary ecological link Key traits/Properties Formula  
 NDVI Vegetation health Chlorophyll, photosynthetic activity, biomass 801.25 nm − 673.13 nm

801.25 nm + 673.13 nm
 

 EVI Productivity, canopy structure Chlorophyll, photosynthetic efficiency 2.5 × 801.25 nm − 673.13 nm
801.25 nm + 6 × 673.13 nm − 7.5 × 454.31 nm + 1

 
 TGI Leaf chlorophyll Chlorophyll concentration −0.5 × [190(673.13 nm − 550.69 nm) − 120(673.13 nm − 482.41 nm)] 
 TCARI Chlorophyll absorption, stress Chlorophyll, nitrogen, photosynthetic capacity 3 ×

(699.78 nm − 673.13 nm) − 0.2(699.78 nm − 550.69 nm)
699.78 nm∕673.13 nm

 

 NDWI Water content Vegetation hydration, drought stress 879.69 nm − 1270.92 nm
879.69 nm + 1270.92 nm

 
 DSWI Water content Dryness stress 801.25 nm + 545.55 nm

1211.05 nm + 679.69 nm
 

 SIPI1 Carotenoid content, stress Carotenoids, photosynthetic efficiency 801.25 nm − 444.70 nm
801.25 nm − 679.69 nm

 
 CRI1 Carotenoid content, stress Carotenoids, stress response, senescence 1

510.83 nm
− 1

550.69 nm
 

 SIPI2 Carotenoid content, stress Anthocyanin accumulation 801.25 nm − 506.02 nm
801.25 nm − 693.01 nm

 
 BGI Dry matter Lignin and cellulose content 449.54 nm

550.69 nm
 

 CUR Fluorescence Photochemical reflectance 673.13 nm × 693.01 nm
(686.32 nm)2

 

Fig. 3. Workflow for testing the spectral variation hypothesis using EnMAP data. Spectral heterogeneity is calculated from pre-processed EnMAP imagery using 
Rao’s Q and the Coefficient of Variation on (1) single bands, (2) specific spectral ranges (VIS, NIR, SWIR), and (3) vegetation indices. The resulting spectral 
heterogeneity values are correlated with in situ tree species diversity (species richness and Shannon’s H). To account for the misalignment between plot size 
(26 m diameter) and pixel resolution (30 m) three approaches are used: (A) an equal-weight approach where all four pixels (P1, P2, P3, P4) contribute equally, 
and (B) a weighted-area approach where pixels are weighted based on their overlap with the plot (e.g., P1 > P4) and (C) a refined weighted-area approach that 
includes only plots with a canopy cover greater than 70% estimated using LiDAR ALS data.
where:

- 𝜌𝑖 is the reflectance value of pixel 𝑖.
- 𝑤𝑖 is the proportional area of the plot covered by pixel 𝑖.
- 𝜇𝑤 is the weighted mean reflectance across the plot.

For the weighted Rao’s Q, we adapted the classical formulation 
of Rao’s quadratic entropy, where abundances (𝑝 ) are defined 
𝑖

6 
as the relative contribution of each pixel to the plot area (𝑝𝑖 =
𝑤𝑖∕

∑

𝑤𝑘). This ensures that each pixel contributes proportionally 
to its overlap with the plot. The resulting weighted Rao’s Q for 
band 𝜆 is given by: 

𝑄𝜆
weighted =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑤𝑖𝑤𝑗𝑑𝜆𝑖𝑗

(

∑𝑁 𝑤
)2

, (6)

𝑘=1 𝑘
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Fig. 4. R2 (coefficient of determination) values from the correlation between spectral heterogeneity (Rao’s Q and CV), calculated for individual EnMAP bands, and 
tree species diversity measured using the species richness. The three approaches compared include: ‘normal’ (unweighted, in dark blue), ‘weighted’ (accounting 
for pixel overlap, in green), and ‘weighted CC > 70%’ (restricted to plots with canopy cover > 70%, in yellow). The top panel presents results using Rao’s Q, 
while the bottom panel shows results using the coefficient of variation (CV). Negative R2 values indicate negative correlations.
where 𝑤𝑖 and 𝑤𝑗 are the proportional overlaps of pixels 𝑖 and 
𝑗 with the plot, and 𝑑𝜆𝑖𝑗 is the pairwise Euclidean distance be-
tween reflectance values of pixels 𝑖 and 𝑗 for band 𝜆. To obtain 
spectral-range level estimates (e.g., VIS, NIR, SWIR), we averaged 
𝑄𝜆
weighted across all bands in the respective range: 

𝑄weighted = 1
𝑛

𝑛
∑

𝜆=1
𝑄𝜆
weighted. (7)

- Weighted-area approach considering plots with CC > 70% – 
This approach builds on the weighted-area method but includes 
only those plots with a CC greater than 70%. The goal is to 
evaluate the influence of tree density and structural complexity 
on the relationship between SH and biodiversity by focusing on 
denser plots.

2.7. LiDAR data and canopy cover estimation

In order to calculate the CC, we used local ALS LiDAR data. The 
data were acquired during an ALS campaign conducted in 2006 by the 
Province of Bolzano/Bozen (freely available here: http://geocatalogo.
retecivica.bz.it/geokatalog/). The Canopy height Models (CHMs) were 
derived from the ALS point cloud data using the R package ‘‘lidR’’. 
First, ground points were classified using the classify_ground()
function with the pmf() algorithm. The height normalization was then 
performed with the normalize_height() function, employing the
knnidw() algorithm. Noise and points with heights below 0 m or 
above 50 m were filtered out using filter_poi(). Successively, 
the CHMs were generated with a spatial resolution of 2.5 m (the 
highest resolution possible due to the number of points per square 
7 
meter) using the rasterize_canopy() function with the p2r()
algorithm. Following the methodology of previous works (Torresani 
et al., 2020, 2023b), the CC for each plot was calculated using the 
following formula:
𝐶𝐶 =

𝑝𝑥2𝑚
𝑝𝑥𝑡𝑜𝑡

× 100

where:

- CC: Canopy cover, expressed as a percentage.
- 𝑝𝑥2𝑚: Number of pixels in a CHM with a value greater than 2 m.
- 𝑝𝑥𝑡𝑜𝑡: Total number of pixels in the plot.

3. Results

3.1. Forest plot diversity and structural attributes

The forest plots included in this study represent a broad gradient of 
tree species diversity and structural complexity. Tree species richness, 
recorded within each 26-m diameter plot, ranged from 1 to 4 species. 
This relatively low but variable richness reflects the typical composition 
of temperate and subalpine forest communities in the Italian Alps. 
In terms of species evenness, measured by the Shannon’s H, values 
ranged from a minimum of 0.14 to a maximum of 1.36, indicating a 
spectrum from monospecific or uneven communities to more diverse 
and balanced assemblages. CC derived from ALS LiDAR data, also 
showed substantial variability, ranging from 41.4% to 96.5%. This 
variation highlights differences in tree density and structure among 
plots, which are expected to influence the spectral signal captured 
by the EnMAP satellite and, consequently, the SH. Full information 
about on each plot (location, species richness, Shannon’s H and CC) 
is provided in the Appendix (Table A1).

http://geocatalogo.retecivica.bz.it/geokatalog/
http://geocatalogo.retecivica.bz.it/geokatalog/
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Fig. 5. R2 (coefficient of determination) values from the correlation between spectral heterogeneity (Rao’s Q and CV), calculated for individual EnMAP bands, 
and tree species diversity measured using Shannon’s H index. The three approaches compared include: ‘normal’ (unweighted, in dark blue), ‘weighted’ (accounting 
for pixel overlap, in green), and ‘weighted CC > 70%’ (restricted to plots with canopy cover > 70%, in yellow). The top panel presents results using Rao’s Q, 
while the bottom panel shows results using the coefficient of variation (CV). Negative R2 values indicate negative correlations.
3.2. Single bands analysis

The coefficient of determination (𝑅2 values, y-axis) between tree 
species diversity, measured using species richness, and SH measured 
using the Rao’s Q index (above) and the CV (below), calculated for 
each individual EnMAP band (x-axis) are presented in Fig.  4. The 
three different approaches (normal approach, weighted approach and 
the weighted approach limited to plots with CC greater than 70%,) 
were compared. R2 values vary across the spectral bands for all three 
approaches considered and they were generally very low in the SWIR 
region—sometimes even negative—slightly higher in the VIS range, and 
tend to increase in the NIR region. The highest R2 values, reaching 
up to 0.38, were obtained using the weighted approach restricted to 
plots with CC greater than 70%, followed by the standard weighted 
approach, and lastly the unweighted (normal) method. This pattern is 
consistent regardless of whether SH is calculated using Rao’s Q or the 
CV.

Similarly, Fig.  5 presents the same analysis, but with tree species di-
versity measured using Shannon’s H index. The results follow a pattern 
comparable to that observed for species richness, with higher R2 values 
in the NIR region and lower values in the SWIR and VIS regions. Over-
all, the highest correlations are obtained using the weighted approach 
limited to plots with CC greater than 70%, while the lowest values 
are observed with the normal approach. Compared to the previous 
results where species diversity was assessed through species richness, 
the correlations observed here are generally slightly weaker.

3.3. Spectral range analysis

Correlation analysis (R2 values with p-values) between tree species 
diversity—assessed using both Shannon’s H index and species
8 
richness—and SH, calculated over three spectral ranges (VIS, NIR, and 
SWIR) using the three different approaches are shown in Fig.  6.

The results highlight a clear variability in the strength of the cor-
relations depending on both the spectral range and the methodological 
approach. In general, SH computed in the NIR range shows the highest 
correlation with tree diversity, followed by VIS and SWIR, which ex-
hibit much weaker or even negative correlations. The best performing 
approach is the weighted method limited to plots with CC > 70% 
(highest R2 = 0.34 when SH is assessed with CV in the NIR using the 
weighted CC > 70% approach), followed by the standard weighted 
method, while the normal approach consistently shows the weakest 
correlations. Additionally, species richness tends to yield stronger cor-
relations than Shannon’s H, particularly in the NIR range. Similar 
patterns were obtained regardless of whether SH was calculated using 
Rao’s Q or CV, indicating consistency between the two heterogeneity 
metrics.

3.4. Vegetation indices analysis

Finally the correlation between tree species diversity, measured 
using both Shannon’s H and species richness, and SH calculated using 
Rao’s Q across various VIs is shown in Fig.  7. Due to space constraints 
and the similarity of the results, the corresponding CV-based analysis 
is presented in the Appendix. Consistent with previous analyses, the 
highest 𝑅2 values are generally obtained using the weighted CC > 70% 
approach, followed by the weighted and then the normal approach. 
The goodness of fit are generally low with R2 > 0.2 observed for 
specific indices, particularly the Triangular Greenness Index (TGI), as 
well as the Structure Insensitive Pigment Indices (SIPI2). As observed in 
previous analyses, and with the exception of a few indices such as BGI, 
the correlations are generally stronger when species richness is used as 
the diversity metric compared to Shannon’s H.
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Fig. 6. R2 (coefficient of determination) values from the correlation between spectral heterogeneity, calculated using Rao’s Q and the coefficient of variation 
(CV), and tree species diversity, measured through Shannon’s H index (blue bars) and species richness (yellow bars). SH was computed across three spectral 
ranges (VIS, NIR, and SWIR) using three different approaches: a normal approach, a weighted approach, and a weighted approach restricted to plots with canopy 
cover (CC) > 70%. Green dots indicate statistically significant relationships (𝑝-value < 0.05). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
Fig. 7. R2 (coefficient of determination) values from the correlation between spectral heterogeneity (Rao’s Q) of different vegetation indices and tree species 
diversity metrics (Shannon’s H and species richness). Bars indicate the strength of the relationship, with three approaches considered: normal (equal contribution 
from all EnMAP pixels), weighted (pixels weighted by their overlap with the plot), and weighted CC > 70 (weighted approach limited to plots with canopy 
cover > 70%). Blue bars represent correlations with Shannon’s H, while yellow bars represent correlations with species richness. Green dots indicate statistically 
significant relationships (𝑝-value < 0.05). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
4. Discussion

In this study, we tested the SVH to estimate tree species diversity 
across various forest plots in the Italian Alps. SH was assessed using 
hyperspectral data from the new German EnMAP satellite and calcu-
lated through two different heterogeneity metrics: Rao’s Q index and 
CV. These SH metrics were then correlated with field-based tree species 
diversity, measured using two complementary indices—Shannon’s H 
9 
and species richness. To comprehensively assess the SVH, we applied 
three levels of spectral analysis: (1) SH calculated at the individual 
band level for each EnMAP spectral band; (2) SH computed across 
broader spectral ranges (VIS, NIR, and SWIR); and (3) SH derived from 
selected VIs related to key ecological traits. We tested these analysis 
using three spatial approaches to understand the influence of spatial 
detail and tree density: (A) a normal approach, where each of the four 
EnMAP pixels overlapping a plot contributed equally; (B) a weighted 
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approach, where pixels were weighted by their area of overlap with 
the plot; and (C) a weighted CC > 70% approach, where only plots 
with CC exceeding 70% (based on ALS data) were included.

4.1. Comparative insights from band-level, spectral range, and VI analyses

Our findings demonstrate that, under certain conditions, SH derived 
from EnMAP hyperspectral data can effectively predict tree species 
diversity. Among the three types of analyses conducted, the band-level 
approach—tested here for the first time using EnMAP spaceborne hy-
perspectral data, revealed weak to moderate correlations. Specifically, 
correlations were generally low in the SWIR region, slightly higher in 
the VIS, and consistently the highest in the NIR bands, across both 
diversity metrics (species richness and Shannon’s H). This is likely 
due to the fact that NIR reflectance is strongly influenced by internal 
leaf structure and canopy characteristics, which tend to vary more 
among different tree species than in other spectral regions (Slaton et al., 
2001; Knyazikhin et al., 2013). Such variability in NIR signals may 
capture subtle differences in species composition, crown architecture, 
and foliage density—ecological traits closely linked to species diversity.

The analysis based on VIs showed also weak results. Among the 
tested indices, TGI, SIPI1, and SIPI2 yielded the highest correlations 
with tree species diversity but the general R2 remain low.

Interestingly, NDVI—despite its widespread use—showed one of the 
lowest correlations with species diversity in our study. While several 
studies have reported strong NDVI–biodiversity relationships (Oindo 
and Skidmore, 2002; Levin et al., 2007; Helfenstein et al., 2022), 
others, such as Hakkenberg et al. (2018) and Pinon et al. (2024), have 
documented weak or negative correlations between NDVI and species 
richness in structurally complex forests. Pinon et al. (2024) found that 
in ecosystems with dense and vertically stratified canopies, such as the 
Atlantic Forest, NDVI can saturate due to high LAI leading to uniformly 
high NDVI values even when species diversity is high. This saturation 
effect reduces NDVI’s sensitivity to additional increases in biomass or 
canopy complexity, which may produce a negative or weak relationship 
with diversity. Moreover, Pinon et al. (2024) highlighted that in forests 
with multiple vegetation layers, reflectance uniformity across dense 
canopies can mask species-level heterogeneity, further diminishing the 
correlation between NDVI and biodiversity metrics. Similar dynamics 
have been observed in other studies attributing weak NDVI–diversity 
relationships to canopy shading, layering, and successional stages that 
modify NIR reflectance patterns (Gillespie, 2005; Schneider et al., 
2017). In our alpine forests, characterized by complex vertical structure 
and heterogeneous canopy layers, these mechanisms likely contribute 
to the observed weak NDVI-diversity correlations. This underscores 
the context-dependent performance of NDVI as a biodiversity proxy, 
influenced by forest structure, canopy complexity, and the potential 
for NDVI saturation in high-biomass systems. The timing of data ac-
quisition in September may have influenced NDVI’s limited ability 
to capture interspecific variability, particularly in conifer-dominated 
alpine ecosystems. According to previous studies that tested the SVH in 
the same region (Torresani et al., 2019, 2018), the peak of vegetation 
activity typically occurs in mid-June, while NDVI derived from spectral 
data acquired in September consistently showed lower correlations 
with species diversity. This highlights a well-recognized characteris-
tic of the SVH: its strong dependence on seasonality (Rossi et al., 
2024; Torresani et al., 2018; Rossi et al., 2021a). Vegetation phenol-
ogy changes throughout the year, influencing canopy reflectance and, 
consequently, the strength of SH–biodiversity relationships. Therefore, 
the results presented here can be considered a ‘‘snapshot’’ specific to 
early autumn conditions. It is likely that if EnMAP imagery had been 
available for other phenological stages—such as peak greenness in 
June—different results would have emerged, potentially favoring the VI 
and improving the overall predictive power of SH metrics. It is worth 
noting that our approach based on VIs comes with some limitations. 
First, the selection of specific EnMAP bands used to compute each 
10 
VI was guided by existing literature; however, alternative or adjacent 
bands—particularly in the NIR region—might have yielded slightly 
different results, and this band selection choice could influence SH 
estimates. Second, our calculation of the CV relied on the absolute mean 
to ensure numerical stability in the presence of negative or near-zero VI 
values, as found in indices such as NDWI or BGI. While this approach 
prevents inflated CV values due to small denominators, it may also re-
duce sensitivity to subtle spectral variation across plots. Future studies 
could explore normalization strategies or alternative formulations to 
further refine the robustness of SH–diversity relationships based on VIs.

Strongest results were observed when SH was computed across 
entire spectral ranges, such as the VIS, NIR, and SWIR regions. This 
approach, which integrates broader spectral information rather than in-
dividual bands, was also tested by Wang et al. (2018a), who evaluated 
the SVH by examining the relationship between spectral variability—
expressed as the CV—and Simpson’s diversity index in a prairie grass-
land. They found that at fine spatial scales (e.g., 1 mm to 10 cm), CV 
calculated from the VIS (430–700 nm) was more strongly correlated 
with biodiversity than CV from the NIR (700–900 nm). However, as 
pixel size increased, the relationship between NIR-derived CV and bio-
diversity became stronger, eventually outperforming the VIS at coarser 
resolutions (25–50 cm). These findings suggest that the predictive 
power of different spectral regions may vary with spatial resolution and 
structural complexity. Although their ecological context differs from 
ours (prairie vs. forest), our study supports a similar conclusion, SH 
calculated over the NIR region consistently outperformed VIS and SWIR 
in predicting tree species diversity. This may reflect the ability of NIR 
wavelengths to capture, as previously stated, structural and composi-
tional differences in forest canopies, which are critical indicators of 
biodiversity. Also Gholizadeh et al. (2018b) showed that SH calculated 
from the NIR region exhibited stronger correlations with plant species 
richness than from the VIS when the spatial resolution was coarse, 
likely due to the NIR’s sensitivity to vegetation structure. Together, 
these results reinforce the importance of spectral region selection in 
biodiversity studies and suggest that NIR, particularly at moderate 
resolutions such as those offered by EnMAP, is especially relevant for 
forest biodiversity assessment.

4.2. Evaluating the impact of spatial approaches on SH–diversity relation-
ships

Our results clearly highlight the importance of spatial approach 
selection when testing the SVH. Among the three tested approaches—
(A) the normal (equal weight) method, (B) the weighted-area method, 
and (C) the weighted-area method considering only plots with CC 
> 70%—the latter two consistently outperformed the normal approach 
in terms of R2 values across all spectral analyses. The normal approach, 
which assigns equal weight to each of the four EnMAP pixels inter-
secting a plot, produced the weakest correlations between SH and tree 
species diversity. This outcome is likely due to the spatial mismatch 
between pixel boundaries and actual plot extent, where pixels may 
contribute less-representative spectral information that dilutes the sig-
nal relevant to field data. Such mismatches are a well-documented 
limitation in remote sensing applications when the spatial grain of the 
imagery does not align with ecological sampling units (Gamon et al., 
2020; Moudrỳ et al., 2023).

In contrast, the weighted-area approach—which weights each pixel 
based on its proportion of spatial overlap with the field
plot—demonstrated significantly stronger correlations. This method 
more accurately reflects the actual spatial contribution of each pixel to 
the sampled area especially in our case where the difference in size be-
tween the pixel spectral reflectance (90 m × 90 m) and plot size (26 m 
diameter) is relatively high. To our knowledge, this is the first study 
to implement such an area-based weighting method for SH calculation 
in the context of the SVH using spaceborne hyperspectral data. This 
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advancement contributes a novel methodological improvement, align-
ing SH estimation more closely with ecological field conditions and 
enhancing the reliability of remote sensing-based biodiversity proxies. 
We are nonetheless aware of the limitations inherent in this approach. 
Specifically, uncertainties in plot geolocation and in the geometric 
correction of EnMAP imagery may introduce spatial misalignments 
that affect SH calculations. Even small mismatches between field plots 
and pixel boundaries could propagate into errors in the estimation 
of SH. However, such spatial uncertainties are a well-recognized and 
often unavoidable challenge in remote sensing applications, partic-
ularly when integrating field data with satellite-derived information 
(Moudrỳ et al., 2023). As in many SVH studies, we acknowledge 
this limitation while striving to minimize its impact through careful 
data processing and methodological refinement. The best results were 
obtained using the third approach, which applied the weighted-area 
method exclusively to plots with a CC greater than 70%. The superior 
performance can be attributed to the reduction of confounding factors 
such as soil background reflectance. This methodological refinement 
aligns with findings by Gholizadeh et al. (2018b), who demonstrated 
that soil exposure can significantly confound spectral diversity assess-
ments in prairie ecosystems. By focusing on plots with high CC, our 
approach minimizes the influence of non-vegetative elements, thereby 
enhancing the accuracy of biodiversity estimations. Similarly Wang 
et al. (2022b) addressed the influence of vegetation percent cover 
on the SH-biodiversity relationship correcting for soil effects by using 
vegetation percent cover (estimated through visual interpretation) to 
adjust their SH indices. This filtering effect has implications beyond 
spectral measurements. It also influences the structural–biodiversity re-
lationship described in the Height Variation Hypothesis (HVH), which 
links vertical canopy complexity to species richness and composition 
(Torresani et al., 2023b, 2024b). Studies have shown that structural 
metrics, such as canopy height variation derived from LiDAR, tend to 
correlate more strongly with species diversity in closed-canopy, where 
vertical layering is well-developed and less obscured by non-vegetative 
elements (Hakkenberg et al., 2016, 2023). Conversely, in open areas or 
plots with sparse vegetation cover, the lack of vertical structure and the 
increased influence of ground features can weaken this relationship.

This adds a valuable contribution and a methodological reference 
point for future work. While LiDAR data was essential in our study for 
identifying high-canopy-cover plots, we agree that the unavailability 
of ALS data should not be considered a barrier to implementing this 
framework more broadly. Emerging alternatives may help overcome 
this limitation. For example, the recently released global CHM at 1 m 
spatial resolution, developed by Meta and World Resource Institute 
(Tolan et al., 2024), based on GEDI data (Moudrỳ et al., 2024c) could 
serve as a valuable alternative. Preliminary analyses (Torresani et al., 
2025) suggest that this dataset can reliably approximate canopy cover 
in alpine forests. We believe that such resources, especially when avail-
able as open-access datasets, offer promising opportunities to replicate 
and extend our approach in regions lacking high-resolution LiDAR data.

4.3. Influence of field-based diversity metrics and spectral heterogeneity 
measures

Our results indicate that the correlation between SH and tree species 
diversity was generally stronger when species richness was used as 
the field-based diversity metric. This finding is consistent with several 
studies in the literature (Arekhi et al., 2017) showing that abundance-
sensitive metrics, like Shannon’s H, can be more affected by mismatches 
between the spatial scale of field plots and the pixel size of remote sens-
ing imagery (Gamon et al., 2020; Schmidtlein and Fassnacht, 2017). 
In our study, field plots had a diameter of 26 m, while EnMAP pixels 
are 30 × 30 m. Although these scales are similar, the pixel footprint 
still exceeds the plot area, introducing potential signal integration 
from neighboring vegetation outside the plots. Species richness, which 
simply counts species presence and is less sensitive to abundance, is 
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more robust to this type of spatial mismatch. In contrast, Shannon’s H 
relies on accurate species abundance estimates, which may not align 
well with the spectral signal averaged over a larger pixel area, thereby 
weakening correlations with SH (Rocchini et al., 2010; Torresani et al., 
2024c). Moreover, the alpine forests analyzed in our study are char-
acterized by low tree species richness and sparse canopy gaps, which 
may amplify the effects of pixel–plot scale discrepancies. Such environ-
ments can lead to mixed spectral signals within pixels, especially when 
plots are near ecotones or contain small openings, further affecting 
abundance-weighted metrics like Shannon’s H. This is in line with 
findings from Gamon et al. (2020) and Moudrỳ et al. (2023), who em-
phasize the importance of scale alignment for reliable optical–diversity 
relationships. These results highlight the critical need to carefully 
consider spatial scale when analyzing SH–biodiversity relationships 
(Torresani et al., 2024c). Matching field plot size with the resolution 
of remote sensing imagery—or applying methods that account for scale 
mismatches—can help improve the accuracy of SH–diversity corre-
lations, particularly when using diversity indices sensitive to species 
abundances. On the other side, in different SVH studies, stronger cor-
relations have been reported when diversity metrics that account for 
species abundance, such as Shannon’s H (Oldeland et al., 2010; Wang 
et al., 2016, 2018b; Torresani et al., 2019) are used.

These differences across studies highlight the context-dependent 
nature of the SH–biodiversity relationship and the ongoing debate 
regarding the most appropriate field metric to use. These seasonal 
dynamics emphasize again the importance of the temporal dimension in 
SVH studies, particularly regarding which diversity metric may perform 
best depending on phenological stage.

Regarding SH measures, both Rao’s Q and the CV showed sim-
ilar and consistent results when correlated with tree species diver-
sity. This trend was observed across the different analytical scales—
individual bands, spectral ranges, and VI—and under all three spatial 
approaches. This convergence suggests that both heterogeneity indices 
capture similar aspects of spectral variability relevant to biodiversity, 
despite their conceptual differences. Rao’s Q is a distance-based metric 
that incorporates pairwise dissimilarities in reflectance across pixels 
and wavelengths (Thouverai et al., 2022; Rocchini et al., 2024), while 
CV provides a relative measure of variability by standardizing the 
standard deviation with the mean reflectance (Rossi et al., 2021b). 
The fact that both measures perform similarly in our study supports 
the idea that SH, regardless of how it is quantified, holds meaning-
ful ecological information about species diversity—at least in forest 
ecosystems like those of the Italian Alps. These results are in line 
with findings from other studies that have compared multiple SH 
metrics, such as Tagliabue et al. (2020) and Wang et al. (2022a), 
which also reported relatively small differences in the predictive power 
of different heterogeneity indices when applied to species diversity 
estimation. It is worth to highlight that this study represents, to our 
knowledge, the first application of a weighted Rao’s Q formulation for 
SH, where pixel contributions are scaled by their proportional overlap 
with the plot. This approach is conceptually analogous to the weighting 
strategies previously applied to other heterogeneity metrics, such as 
the CV (e.g., Wang et al. (2016, 2018a)), and our results suggest 
that the weighted Rao’s Q performs consistently with more established 
indices. Nevertheless, we acknowledge that further theoretical valida-
tion and systematic comparison with alternative formulations represent 
important directions for future research. 

4.4. Limitations

Our research has some inherent limitations that should be acknowl-
edged. A primary limitation of our study is the temporal mismatch 
between field-based tree diversity data (collected between 2021 and 
2024) and the EnMAP imagery (acquired in September 2023) (Fer-
rara et al., 2023). This multi-year sampling period introduces the 
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possibility that shifts in species composition, tree mortality, recruit-
ment, or forest management activities could have occurred between 
the field surveys and the satellite acquisition (Ferrara et al., 2023). 
Such temporal discrepancies can weaken the relationship between SH 
and field-based diversity measures because they effectively compare 
observations from different ecological moments. While we believe the 
stable nature of alpine forest ecosystems minimizes the likelihood of 
major changes during this period—given slow growth rates and lim-
ited anthropogenic disturbance—some variability cannot be excluded, 
especially for small-scale disturbances (e.g., windthrows, localized pest 
outbreaks) that might not have been recorded but could impact canopy 
structure or composition. Moreover, phenological differences across 
years could further affect comparisons if spectral properties of the 
canopy (e.g., pigment concentrations) varied with interannual climate 
fluctuations. Such discrepancies could potentially introduce bias, but 
they are relatively common in remote sensing studies—and partic-
ularly in SVH research (Torresani et al., 2024c)—due to logistical 
and operational constraints. This challenge is even more pronounced 
when working with satellite systems like EnMAP, which require on-
demand data requests rather than providing continuous, open-access 
imagery as with platforms like Sentinel-2 or Landsat (Carmona et al., 
2024). The need to coordinate limited acquisition windows with field 
campaigns highlights the critical importance of advancing open-source 
data policies in Earth observation missions (Rocchini and Neteler, 
2012). Broader availability of timely, high-resolution hyperspectral 
data would facilitate better alignment between field measurements and 
imagery, ultimately strengthening the accuracy and applicability of 
studies linking SH to biodiversity.

A similar issue applies to the ALS data used to assess CC, which were 
collected in 2006—the only LiDAR dataset available for the region. As 
for the previous limitation, this temporal gap between the ALS data and 
the EnMAP imagery could, in principle, introduce uncertainty due to 
possible changes in forest structure over time. Such changes might stem 
from natural disturbances, management interventions, or successional 
dynamics leading to gradual shifts in canopy closure and vertical struc-
ture (Seidl et al., 2014). While we consider this impact minimal in our 
case, it should be regarded as a potential source of bias in interpreting 
absolute CC values and in extending these findings to other forest 
types or regions with faster structural dynamics. In ecological studies, 
however, temporal mismatches between ALS and field data are rela-
tively common and have been shown not to necessarily compromise the 
validity of results. For example, McRoberts et al. (2018) demonstrated 
that ALS data can retain utility for forest inventory purposes even when 
collected more than 10 years before field measurements, reporting re-
liable estimators with a 12-year lag. Similarly, Hill and Hinsley (2015) 
showed that ALS data could still yield meaningful organism–habitat 
relationships despite field data being collected up to 15 years after the 
LiDAR acquisition. Several lines of evidence suggest furthermore that 
the practical impact of this temporal offset is limited in our case. First, 
we have direct and repeated knowledge of the plots, which we have 
monitored and remeasured in multiple field campaigns. These repeated 
observations did not reveal substantial changes in tree density, species 
composition, or canopy closure across the plots. Second, the study area 
is dominated by montane and alpine and forests characterized by slow 
growth rates and minimal anthropogenic disturbance. The harsh cli-
matic conditions of these high-altitude environments—marked by short 
growing seasons, prolonged snow cover, and limited productivity—
naturally constrain rapid structural changes. Third, none of the plots 
included in the analysis were affected by known recent disturbances 
documented in local forest monitoring programs. As such, although the 
age of the ALS data represents an unavoidable limitation due to the lack 
of updated LiDAR acquisitions, we believe it has minimal influence on 
our key findings. Nonetheless, it is important to recognize that this type 
of limitation is common in studies relying on ALS data, which are not 
always easily accessible and often involve a temporal mismatch with 
more recent remote sensing imagery (Asner et al., 2012; Coomes et al., 
12 
2017). This situation highlights the critical need also for more frequent, 
updated, and openly available ALS datasets, especially given that the 
costs of conducting LiDAR flights have been decreasing in recent years 
(Moudrỳ et al., 2021). Ensuring broader access to up-to-date ALS data 
would greatly improve the accuracy of canopy structure estimates and 
strengthen studies that integrate structural information with SH for 
biodiversity monitoring.

Another potential limitation relates to the relatively low tree species 
richness in our alpine forest plots. This is substantially lower than 
in, e.g., tropical forests, where diversity can exceed several hundred 
species per hectare. However, such low diversity is typical of alpine en-
vironments, shaped, as previously stated, by harsh climatic conditions 
and nutrient-poor soils—which naturally constrain species richness and 
composition. Importantly, previous remote sensing studies have shown 
that meaningful SH–diversity relationships can still be detected in 
species-poor ecosystems. For instance, Torresani et al. (2019) reported 
SH–diversity links in alpine conifer forests where plot-level richness 
reached up to 7 species and Shannon’s diversity ranged from 0.1 to 1.4, 
while Wang et al. (2022a) demonstrated similar patterns in mangrove 
stands with 1–5 species and Shannon’s index between 0 and 1.55. 
These richness and diversity ranges are comparable to those in our 
study (1–4 species; Shannon’s index 0.14–1.36). In ecosystems with 
higher species richness and more complex assemblages, the relation-
ships between SH and biodiversity may differ substantially due to 
increased spectral overlap among co-occurring species, higher canopy 
layering, or diverse structural traits (Gamon et al., 2020). As a result, 
the strength of SH–biodiversity relationships observed here cannot 
be assumed to generalize directly to ecosystems with greater floris-
tic complexity. Moreover, while lower species richness can simplify 
interpretation by reducing spectral confounding at moderate spatial 
resolutions (e.g., 30 m), it may also limit the ecological insight gained 
from SH metrics by failing to capture the spectral complexity present 
in more diverse forests. Therefore, although our study provides valu-
able initial evidence of the potential for EnMAP-based SH to estimate 
diversity in alpine forests, future research should extend these analyses 
to ecosystems with broader species richness gradients to more fully 
evaluate the robustness and transferability of the SVH across different 
biodiversity contexts. Possible approaches include the use of radiative 
transfer simulations (e.g., PROSAIL or forest-specific canopy models) 
to generate synthetic reflectance scenarios with higher diversity lev-
els, as well as cross-site comparisons with datasets from temperate 
or tropical forests where tree diversity is substantially greater. These 
strategies would provide valuable benchmarks for evaluating whether 
the relationships detected in species-poor alpine systems hold under 
more species-rich conditions.

Lastly, the number of usable plots could be viewed as a limitation. 
Of the 52 field plots initially available, only 42 were ultimately used 
due to corrupted or incomplete spectral data in certain areas. While a 
larger sample size would increase statistical power, it is worth noting 
that other SVH studies have successfully demonstrated meaningful 
relationships using comparable or even fewer plots. For instance, Wang 
et al. (2018a) conducted detailed SVH analyses using a limited number 
of plots in prairie ecosystems. Gould (2000) assessed SH in just 17 forest 
plots in the Hood River region of the Central Canadian Arctic. Xu et al. 
(2022) tested SVH relationships using 18 sample plots in alpine steppe 
at the Sanjiangyuan National Nature Reserve, Qinghai Province, China. 
Similarly, Végh and Tsuyuzaki (2021) investigated the effects of image 
resolution on SH–biodiversity relationships within 35 forest plots in 
Mount Usu, located in the temperate region of northern Japan. Given 
that this study represents one of the first applications of EnMAP data in 
alpine forests, the inclusion of 42 high-quality, well-characterized plots 
is still a strong foundation for preliminary assessment.

Taken together, while these limitations highlight areas for future 
improvement, they do not detract from the overall validity of our find-
ings. Rather, they underscore the need for continued research across 
diverse ecosystems, temporal scales, and data availability conditions.
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5. Conclusions

This study tested the SVH using EnMAP hyperspectral data to assess 
tree species diversity in forest ecosystems, demonstrating that the cor-
relation between SH and species diversity can be effective under certain 
conditions. Our findings highlight the potential of EnMAP data for 
biodiversity monitoring, complementing traditional field-based assess-
ments, particularly when SH is calculated in specific spectral regions. 
However, several limitations and knowledge gaps remain. Notably, 
this study was based on a single EnMAP image acquired in early 
autumn, and we were therefore unable to assess seasonal variation in 
the SH–biodiversity relationship. The temporal dimension remains a 
critical aspect of SVH research, especially in forest ecosystems where 
phenological changes can influence both spectral signals and species 
detectability. To date, multi-temporal analyses using spaceborne hy-
perspectral data remain largely unexplored, and future studies should 
prioritize this direction to better understand the seasonal dynamics 
of biodiversity patterns. In addition, further research is needed to 
address remaining uncertainties in the SVH framework. For example, 
exploring the relationship between SH and diversity across different 
taxa—such as understory vegetation, fungi, or fauna—would offer valu-
able insights into the broader ecological applications of hyperspectral 
remote sensing. Future studies could also focus on integrating sub-
pixel spectral unmixing techniques (Rossi and Gholizadeh, 2023) to 
reduce the influence of mixed pixels and enhance the reliability of SH 
estimates, especially when working with moderate-resolution sensors 
like EnMAP. Additionally, assessing beta diversity using hyperspectral 
data represents a promising direction for future research as done in 
recent studies (Bongalov et al., 2019) in order to capture spatial pat-
terns of biodiversity beyond local (alpha) diversity. Finally, integrating 
SVH with structural information derived from LiDAR or radar data, 
as shown in previous studies (Torresani et al., 2020; Tamburlin et al., 
2021), may enhance biodiversity estimation, especially in forests where 
vertical structure and canopy complexity are key drivers of diversity 
(Hakkenberg et al., 2016, 2023). Such integrative approaches hold 
great promise for advancing remote sensing-based biodiversity mon-
itoring, enabling more robust, temporally explicit, and ecologically 
meaningful assessments across spatial and biological scales.
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Moudrỳ, V., Keil, P., Gábor, L., Lecours, V., Zarzo-Arias, A., Barták, V., Malavasi, M., 
Rocchini, D., Torresani, M., Gdulová, K., et al., 2023. Scale mismatches between 
predictor and response variables in species distribution modelling: A review of 
practices for appropriate grain selection. Prog. Phys. Geogr.: Earth Environ. 47 (3), 
467–482.
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